Multimedia Tools and Applications, 78(11), 15169-
15211. doi:10.1007/s11042-018-6894-4
Jiang, M., Sanger, T., & Liu, X. (2019). Combining
Contextualized Embeddings and Prior Knowledge for
Clinical Named Entity Recognition: Evaluation Study.
JMIR Med Inform, 7(4), e14850. doi:10.2196/14850
Kim, K., Polite, B., Hedeker, D., Liebovitz, D., Randal, F.,
Jayaprakash, M., . . . Lam, H. (2020). Implementing a
multilevel intervention to accelerate colorectal cancer
screening and follow-up in federally qualified health
centers using a stepped wedge design: a study protocol.
Implementation Science, 15(1), 96.
doi:10.1186/s13012-020-01045-4
Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., &
Kang, J. (2019). BioBERT: a pre-trained biomedical
language representation model for biomedical text
mining. Bioinformatics (Oxford, England).
doi:10.1093/bioinformatics/btz682
Malte, A., & Ratadiya, P. (2019). Evolution of transfer
learning in natural language processing. CoRR,
abs/1910.07370.
Nayor, J., Borges, L. F., Goryachev, S., Gainer, V. S., &
Saltzman, J. R. (2018). Natural Language Processing
Accurately Calculates Adenoma and Sessile Serrated
Polyp Detection Rates. Dig Dis Sci, 63(7), 1794-1800.
doi:10.1007/s10620-018-5078-4
Neves, M., & Ševa, J. (2021). An extensive review of tools
for manual annotation of documents. Brief Bioinform,
22(1), 146-163. doi:10.1093/bib/bbz130
Patterson, O. V., Forbush, T. B., Saini, S. D., Moser, S. E.,
& DuVall, S. L. (2015). Classifying the Indication for
Colonoscopy Procedures: A Comparison of NLP
Approaches in a Diverse National Healthcare System.
Stud Health Technol Inform, 216, 614-618.
Ratner, A., Bach, S. H., Ehrenberg, H., Fries, J., Wu, S., &
Re, C. (2017). Snorkel: Rapid Training Data Creation
with Weak Supervision. Proceedings VLDB
Endowment, 11(3), 269-282.
doi:10.14778/3157794.3157797
Rex, D. K., Schoenfeld, P. S., Cohen, J., Pike, I. M., Adler,
D. G., Fennerty, M. B., . . . Weinberg, D. S. (2015).
Quality indicators for colonoscopy. Gastrointest
Endosc, 81(1), 31-53. doi:10.1016/j.gie.2014.07.058
Roberts, A., Gaizauskas, R., Hepple, M., Davis, N.,
Demetriou, G., Guo, Y., . . . Wheeldin, B. (2007). The
CLEF corpus: semantic annotation of clinical text.
AMIA ... Annual Symposium proceedings. AMIA
Symposium, 2007, 625-629.
Schmidt, J., Marques, M. R. G., Botti, S., & Marques, M.
A. L. (2019). Recent advances and applications of
machine learning in solid-state materials science. npj
Computational Materials, 5(1), 83.
doi:10.1038/s41524-019-0221-0
Spasic, I., & Nenadic, G. (2020). Clinical Text Data in
Machine Learning: Systematic Review. JMIR Med
Inform, 8(3), e17984-e17984. doi:10.2196/17984
Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou,
S., & Tsujii, J. i. (2012, apr). brat: a Web-based Tool
for NLP-Assisted Text Annotation, Avignon, France.
Sun, W., Rumshisky, A., & Uzuner, O. (2013). Evaluating
temporal relations in clinical text: 2012 i2b2 Challenge.
J Am Med Inform Assoc, 20(5), 806-813.
doi:10.1136/amiajnl-2013-001628
Syed, S., Tharian, B., Syeda, H. B., Zozus, M., Greer, M.
L., Bhattacharyya, S., . . . Prior, F. (2021). Consolidated
EHR Workflow for Endoscopy Quality Reporting. Stud
Health Technol Inform, 281, 427-431.
doi:10.3233/shti210194
Wei, Q., Franklin, A., Cohen, T., & Xu, H. (2018). Clinical
text annotation - what factors are associated with the
cost of time? AMIA Annu Symp Proc, 2018, 1552-1560.
Wu, Y., Yang, X., Bian, J., Guo, Y., Xu, H., & Hogan, W.
(2018). Combine Factual Medical Knowledge and
Distributed Word Representation to Improve Clinical
Named Entity Recognition. AMIA Annu Symp Proc,
2018, 1110-1117.