researchers. IRAS ID: 227117 REC reference:
17/EM/0254.
REFERENCES
van der Aalst, W. M. P. (2011) Process mining—discovery,
conformance and enhancement of business processes.
[Book]. Springer, Berlin. doi: https://doi.org/10.1007/
978-3-642-19345-3.
van der Aalst, W. M. P. (2013) ‘Process cubes: slicing,
dicing, rolling up and drilling down event data for
process mining’, in Asia-Pacific Conference on
Business Process Management. Lecture Notes in
Business Information Processing, pp. 1–22. doi:
10.1007/978-3-319-02922-1_1.
van der Aalst, W. (2016) Process mining - data science in
actions. [Book]. Berlin, Heidelberg: Springer Berlin
Heidelberg. doi: 10.1007/978-3-662-49851-4.
Bartosch, P., McGuigan, F. E. and Akesson, K. E. (2018)
‘Progression of frailty and prevalence of osteoporosis
in a community cohort of older women—a 10-year
longitudinal study’, Osteoporosis International
Journal. 29(10), pp. 2191–2199. doi: 10.1007/s00198-
018-4593-7.
Buijs, J. C. A. M., van Dongen, B. F. and van der Aalst, W.
M. P. (2012) ‘On the role of fitness, precision,
generalization and simplicity in process discovery’, in
International Journal of Cooperative Information
Systems, pp. 305–322. doi: 10.1007/978-3-642-33606-
5_19.
Chamberlain, A. M. et al. (2016) ‘Frailty trajectories in an
elderly population-based cohort’, Journal of the
American Geriatrics Society, 64(2), pp. 285–292. doi:
10.1111/jgs.13944.
Clegg, A. et al. (2013) ‘Frailty in elderly people’, The
Lancet, 381(9868), pp. 752–762. doi: 10.1016/S0140-
6736(12)62167-9.
Clegg, A. et al. (2016) ‘Development and validation of an
electronic frailty index using routine primary care
electronic health record data’, Journal of Age and
Ageing, 45(3), pp. 353–360. doi: 10.1093/ageing/
afw039.
Clegg, A. and Young, J. (2011) ‘The frailty syndrome’,
Clinical Medicine Journal, 11(1), pp. 72–75. doi:
10.7861/clinmedicine.11-1-72.
Van Eck, M. L. et al. (2015) ‘PM2: A process mining
project methodology’, International Conference on
Advanced Information Systems Engineering, 9097, pp.
297–313. doi: 10.1007/978-3-319-19069-3_19.
Farid, N. F., de Kamps, M. and Johnson, O. A. (2019)
‘Process mining in frail elderly care: A literature
review’, HEALTHINF 2019 - 12th International
Conference on Health Informatics, Proceedings,
BIOSTEC 2019, pp. 332–339.
Fried, L. P. et al. (2004) ‘Untangling the concepts of
disability, frailty, and comorbidity: implications for
improved targeting and care’, The Journals of
Gerontology Series A: Biological Sciences and Medical
Sciences, 59(3), pp. M255–M263. doi: 10.1093/
gerona/59.3.M255.
Gill, T. M. et al. (2006) ‘Transitions between frailty states
among community-living older persons’,
Archives of
Internal Medicine Journal, 166(4), pp. 418–423. doi:
10.1001/archinte.166.4.418.
Han, L. et al. (2019) ‘The impact of frailty on healthcare
resource use: a longitudinal analysis using the Clinical
Practice Research Datalink in England’, Age and
Ageing, 48(5), pp. 665–671. doi: 10.1093/ageing/af
z088.
Jensen, A. B. et al. (2014) ‘Temporal disease trajectories
condensed from population-wide registry data covering
6.2 million patients’, Nature Communications, 5(May),
pp. 1–10. doi: 10.1038/ncomms5022.
Kurniati, A. P. et al. (2020) ‘Using a multi-level process
comparison for process change analysis in cancer
pathways’, International Journal of Environmental
Research and Public Health, 17(19), p. 16. doi:
10.3390/ijerph17197210.
Kusuma, G. P. et al. (2020) ‘Process mining of disease
trajectories: A feasibility study’, in HEALTHINF 2020
- 13th International Conference on Health Informatics,
Proceedings; BIOSTEC 2020, pp. 705–712. doi:
10.5220/0009166607050712.
Lang, P. O., Michel, J. P. and Zekry, D. (2009) ‘Frailty
syndrome: A transitional state in a dynamic process’,
Journal of Gerontology, 55(5), pp. 539–549. doi:
10.1159/000211949.
Lansbury, L. N. et al. (2017) ‘Use of the electronic Frailty
Index to identify vulnerable patients: A pilot study in
primary care’, British Journal of General Practice,
67(664), pp. e751–e756. doi: 10.3399/bjgp17X693089.
Mans, R. S. et al. (2013) ‘Process mining in healthcare: data
challenges when answering frequently posed
questions’, in Process Support and Knowledge
Representation in Health Care. ProHealth 2012,
KR4HC 2012. Lecture Notes in Computer Science.
Springer, pp. 140–153. doi: 10.1007/978-3-642-36438-
9_10.
Pescosolido, B. A. (2013) ‘Patient Trajectories’, in [Book]
The Wiley Blackwell Encyclopedia of Health, Illness,
Behavior, and Society. Chichester, UK: John Wiley &
Sons, Ltd, pp. 1770–1777. Available at:
https://onlinelibrary.wiley.com/doi/10.1002/97811184
10868.wbehibs282.
Pialoux, T., Goyard, J. and Lesourd, B. (2012) ‘Screening
tools for frailty in primary health care: A systematic
review’, Journal of Geriatrics & Gerontology, 12(2),
pp. 189–197. doi: 10.1111/j.1447-0594.2011.00797.x.
Rogers, N. T. et al. (2017) ‘Physical activity and
trajectories of frailty among older adults: Evidence
from the English Longitudinal Study of Ageing’, PLoS
ONE Journal,12(2),pp.1–12.doi: 10.1371/journal.po
ne.0170878.
Setiati, S. et al. (2019) ‘Frailty state among Indonesian
elderly: Prevalence, associated factors, and frailty state
transition’, BMC Geriatrics. 19(1), pp. 1–10. doi:
10.1186/s12877-019-1198-8.