Deng, G. (2016). A generalized gamma correction algo-
rithm based on the slip model. EURASIP Journal on
Advances in Signal Processing, 2016(1):69.
Egnal, G. (2000). Mutual information as a stereo correspon-
dence measure.
Fookes, C., Bennamoun, M., and Lamanna, A. (2002). Im-
proved stereo image matching using mutual informa-
tion and hierarchical prior probabilities. In Object
recognition supported by user interaction for service
robots, volume 2, pages 937–940. IEEE.
Geiger, A., Roser, M., and Urtasun, R. (2010). Efficient
large-scale stereo matching. In Asian conference on
computer vision, pages 25–38. Springer.
Geiger, A., Ziegler, J., and Stiller, C. (2011). Stereoscan:
Dense 3d reconstruction in real-time. In 2011 IEEE
intelligent vehicles symposium (IV), pages 963–968.
Ieee.
Han, H., Shan, S., Chen, X., and Gao, W. (2013). A com-
parative study on illumination preprocessing in face
recognition. Pattern Recognition, 46(6):1691–1699.
Hao, D., Wen, J., Xiao, Q., You, D., and Tang, Y.
(2019). An improved topography-coupled kernel-
driven model for land surface anisotropic reflectance.
IEEE Transactions on Geoscience and Remote Sens-
ing.
Heo, Y. S., Lee, K. M., and Lee, S. U. (2008). Illumination
and camera invariant stereo matching. In 2008 IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 1–8. IEEE.
Heo, Y. S., Lee, K. M., and Lee, S. U. (2010). Robust stereo
matching using adaptive normalized cross-correlation.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(4):807–822.
Heo, Y. S., Lee, K. M., and Lee, S. U. (2012). Joint depth
map and color consistency estimation for stereo im-
ages with different illuminations and cameras. IEEE
transactions on pattern analysis and machine intelli-
gence, 35(5):1094–1106.
Hirschmuller, H. (2007). Stereo processing by semiglobal
matching and mutual information. IEEE Transac-
tions on pattern analysis and machine intelligence,
30(2):328–341.
Hirschmuller, H. and Scharstein, D. (2007). Evaluation of
cost functions for stereo matching. In 2007 IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 1–8. IEEE.
Kelemen, C. and Szirmay-Kalos, L. (2001). A microfacet
based coupled specular-matte brdf model with impor-
tance sampling. In Eurographics short presentations,
volume 25, page 34.
Khan, M. F., Khan, E., and Abbasi, Z. (2015). Image con-
trast enhancement using normalized histogram equal-
ization. Optik, 126(24):4868–4875.
Kim, J. et al. (2003). Visual correspondence using energy
minimization and mutual information. In Proceed-
ings Ninth IEEE International Conference on Com-
puter Vision, pages 1033–1040. IEEE.
Lipson, L., Teed, Z., and Deng, J. (2021). Raft-stereo: Mul-
tilevel recurrent field transforms for stereo matching.
arXiv preprint arXiv:2109.07547.
Menze, M., Heipke, C., and Geiger, A. (2018). Object scene
flow. ISPRS Journal of Photogrammetry and Remote
Sensing (JPRS).
Mozerov, M. G. and van de Weijer, J. (2019). One-view
occlusion detection for stereo matching with a fully
connected crf model. IEEE Transactions on Image
Processing, 28(6):2936–2947.
Ng, T.-T., Chang, S.-F., and Tsui, M.-P. (2007). Using ge-
ometry invariants for camera response function esti-
mation. In 2007 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1–8. IEEE.
Pang, J., Sun, W., Ren, J. S., Yang, C., and Yan, Q. (2017).
Cascade residual learning: A two-stage convolutional
neural network for stereo matching. In Proceedings of
the IEEE International Conference on Computer Vi-
sion Workshops, pages 887–895.
Rahman, S., Rahman, M. M., Abdullah-Al-Wadud, M., Al-
Quaderi, G. D., and Shoyaib, M. (2016). An adaptive
gamma correction for image enhancement. EURASIP
Journal on Image and Video Processing, 2016(1):1–
13.
Sarkar, I. and Bansal, M. (2007). A wavelet-based multires-
olution approach to solve the stereo correspondence
problem using mutual information. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B (Cy-
bernetics), 37(4):1009–1014.
Scharstein, D., Hirschm
¨
uller, H., Kitajima, Y., Krathwohl,
G., Ne
ˇ
si
´
c, N., Wang, X., and Westling, P. (2014).
High-resolution stereo datasets with subpixel-accurate
ground truth. In German conference on pattern recog-
nition, pages 31–42. Springer.
Scharstein, D. and Szeliski, R. (2002). A taxonomy and
evaluation of dense two-frame stereo correspondence
algorithms. International journal of computer vision,
47(1-3):7–42.
Schlick, C. (1994). An inexpensive brdf model for
physically-based rendering. In Computer graphics fo-
rum, volume 13, pages 233–246. Wiley Online Li-
brary.
Sloan, P.-P., Luna, B., and Snyder, J. (2005). Local, de-
formable precomputed radiance transfer. ACM Trans-
actions on Graphics (TOG), 24(3):1216–1224.
Song, D.-l., Jiang, Q.-l., Sun, W.-c., et al. (2013). A sur-
vey: Stereo based navigation for mobile binocular
robots. In Robot Intelligence Technology and Appli-
cations 2012, pages 1035–1046. Springer.
Tan, X. and Triggs, B. (2010). Enhanced local texture fea-
ture sets for face recognition under difficult lighting
conditions. IEEE transactions on image processing,
19(6):1635–1650.
Taniai, T., Matsushita, Y., Sato, Y., and Naemura, T. (2017).
Continuous 3d label stereo matching using local ex-
pansion moves. IEEE transactions on pattern analysis
and machine intelligence, 40(11):2725–2739.
Walter, B., Marschner, S. R., Li, H., and Torrance, K. E.
(2007a). Microfacet models for refraction through
rough surfaces. In Proceedings of the 18th Eurograph-
ics Conference on Rendering Techniques, EGSR’07,
page 195–206, Goslar, DEU. Eurographics Associa-
tion.
BRDF-based Irradiance Image Estimation to Remove Radiometric Differences for Stereo Matching
743