Latin American Robotic Symposium, 2018 Brazilian
Symposium on Robotics (SBR) and 2018 Workshop on
Robotics in Education (WRE), pages 112–117.
Buckeridge, R. (2015). With autonomous, self-driving cars
likely to be commonplace by around 2025, these ve-
hicles will change our roads, our relationship with our
cars and society at large. buckle up, a revolution is
coming!
Carroll, J., Bellehumeur, D., and Carroll, C. (2013). System
and method for detecting and measuring ethyl alcohol
in the blood of a motorized vehicle driver transder-
mally and non-invasively in the presence of interfer-
ents. US Patent App. 2013/0027209.
CDC, U. (2015). Mobile vehicle safety-impaired driving.
Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine learning, 20(3):273–297.
Craye, C. and Karray, F. (2015). Driver distraction detec-
tion and recognition using rgb-d sensor. arXiv preprint
arXiv:1502.00250.
De Boni, R., Pechansky, F., Silva, P. L. d. N., de Vasconcel-
los, M. T. L., and Bastos, F. I. (2012). Is the Preva-
lence of Driving After Drinking Higher in Entertain-
ment Areas? Alcohol and Alcoholism, 48(3):356–362.
Deshmukh, S. V. and Dehzangi, O. (2017). Ecg-based
driver distraction identification using wavelet packet
transform and discriminative kernel-based features. In
2017 IEEE International Conference on Smart Com-
puting (SMARTCOMP), pages 1–7.
Fernandes, L. C., Souza, J. R., Pessin, G., Shinzato, P. Y.,
Sales, D., Mendes, C., Prado, M., Klaser, R., Mag-
alh
˜
aes, A. C., Hata, A., Pigatto, D., Branco, K. C.,
Grassi Jr., V., Osorio, F. S., and Wolf, D. F. (2014).
Carina intelligent robotic car: Architectural design
and applications. Journal of Systems Architecture,
60(4):372–392.
Gehrig, S. K. and Stein, F. J. (1999). Dead reckoning and
cartography using stereo vision for an autonomous
car. In International Conference on Intelligent Robots
and Systems. IEEE.
Goldberg, D. E. (1989). Genetic Algorithms in Search, Op-
timization, and Machine Learning. Addison-Wesley
Professional.
Haile, E. (1992). Drunk driver detection system. US Patent
5,096,329.
Jain, A. K., Mao, J., and Mohiuddin, K. M. (1996). Ar-
tificial neural networks: A tutorial. IEEE computer,
29(3):31–44.
Johnson, D. A. and Trivedi, M. M. (2011). Driving style
recognition using a smartphone as a sensor platform.
In Intelligent Transportation Systems, 2011 14th In-
ternational IEEE Conference on, pages 1609–1615.
Kohavi, R. (1995). A study of cross-validation and boot-
strap for accuracy estimation and model selection.
In Ijcai, volume 14, pages 1137–1145. Montreal,
Canada.
Kumar, K., Alkoffash, M., Dange, S., Idarrou, A., Sridevi,
N., Sheeba, J., Shah, N., Sharma, S., Elyasi, G., and
Saremi, H. (2012). Morphology based facial feature
extraction and facial expression recognition for driver
vigilance. International Journal of Computer Appli-
cations, 51(2):17–24.
Lee, J., Li, J., Liu, L., and Chen, C. (2006). A novel driving
pattern recognition and status monitoring system. In
Chang, L. and Lie, W., editors, Advances in Image
and Video Technology, volume 4319 of Lecture Notes
in CS, pages 504–512. Springer Berlin Heidelberg.
Lenskiy, A. and Lee, J. (2012). Driver’s eye blinking detec-
tion using novel color and texture segmentation algo-
rithms. International Journal of Control, Automation
and Systems, 10(2):317–327.
Minist
´
erio das Cidades, B. (2012). Aplicativo m
˜
aos no
volante.
Park, H., Ahn, D., Park, T., and Shin, K. G. (2018). Auto-
matic identification of driver’s smartphone exploiting
common vehicle-riding actions. IEEE Transactions
on Mobile Computing, 17(2):265–278.
Riedmiller, M. and Braun, H. (1992). Rprop-a fast adaptive
learning algorithm. In Proc. of ISCIS VII, Universitat.
Citeseer.
Seshadri, K., Juefei-Xu, F., Pal, D. K., Savvides, M., and
Thor, C. P. (2015). Driver cell phone usage detection
on strategic highway research program (shrp2) face
view videos.
Shirazi, M. M. and Rad, A. B. (2014). Detection of in-
toxicated drivers using online system identification of
steering behavior. IEEE Transactions on Intelligent
Transportation Systems, 15(4):1738–1747.
Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finoc-
chio, M., Blake, A., Cook, M., and Moore, R. (2013).
Real-time human pose recognition in parts from single
depth images. Commun. ACM, 56(1):116–124.
Strayer, D. L., Cooper, J. M., Turrill, J., Coleman, J.,
Medeiros-Ward, N., and Biondi, F. (2013). Measuring
cognitive distraction in the automobile. AAA Founda-
tion for Traffic Safety - June 2013, pages 1–34.
Strayer, D. L., Drews, F. A., and Johnston, W. A. (2003).
Cell phone-induced failures of visual attention during
simulated driving. Journal of experimental psychol-
ogy: Applied, 9(1):23.
Strayer, D. L., Watson, J. M., and Drews, F. A. (2011).
2 cognitive distraction while multitasking in the au-
tomobile. Psychology of Learning and Motivation-
Advances in Research and Theory, 54:29.
Veeraraghavan, H., Bird, N., Atev, S., and Papanikolopou-
los, N. (2007). Classifiers for driver activity monitor-
ing. Transportation Research Part C: Emerging Tech-
nologies, 15(1):51–67.
WHO, W.-H.-O. (2018). Global status report on road safety
2018. World Health Organization.
ADAS Classifier for Driver Monitoring and Driving Qualification using Both Internal and External Vehicle Data
567