Juefei-Xu, F., Dey, R., Bodetti, V. N., and Savvides, M.
(2018). RankGAN: A Maximum Margin Ranking
GAN for Generating Faces. In Proceedings of the
Asian Conference on Computer Vision (ACCV).
Jung, T., Kim, S., and Kim, K. (2020). Deepvision: Deep-
fakes detection using human eye blinking pattern.
IEEE Access, 8:83144–83154.
Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2018). Pro-
gressive growing of GANs for improved quality, sta-
bility, and variation. In International Conference on
Learning Representations.
Karras, T., Laine, S., and Aila, T. (2019). A style-
based generator architecture for generative adversar-
ial networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
4401–4410.
Korshunov, P. and Marcel, S. (2018). Deepfakes: a new
threat to face recognition? assessment and detection.
CoRR, abs/1812.08685.
Kowalski, M. (2016). Faceswap code. (Accessed on
08/26/2021).
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. Advances in neural information processing
systems, 25:1097–1105.
Li, L., Bao, J., Zhang, T., Yang, H., Chen, D., Wen, F.,
and Guo, B. (2020). Face x-ray for more general face
forgery detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 5001–5010.
Li, Y., Chang, M.-C., and Lyu, S. (2018). In ictu oculi: Ex-
posing ai created fake videos by detecting eye blink-
ing. In 2018 IEEE International Workshop on Infor-
mation Forensics and Security (WIFS), pages 1–7.
Li, Y. and Lyu, S. (2019). Exposing deepfake videos by de-
tecting face warping artifacts. In IEEE Conference on
Computer Vision and Pattern Recognition Workshops
(CVPRW).
Lin, M., Chen, Q., and Yan, S. (2013). Network in network.
arXiv preprint arXiv:1312.4400.
Liu, J., Zhu, K., Lu, W., Luo, X., and Zhao, X. (2021). A
lightweight 3d convolutional neural network for deep-
fake detection. International Journal of Intelligent
Systems, 36(9):4990–5004.
Lyu, S. (2020). Deepfake detection: Current challenges and
next steps. pages 1–6.
Mirsky, Y. and Lee, W. (2021). The creation and detection
of deepfakes: A survey. ACM Comput. Surv., 54(1).
R
¨
ossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies,
J., and Nießner, M. (2018). Faceforensics: A large-
scale video dataset for forgery detection in human
faces. CoRR, abs/1803.09179.
R
¨
ossler, A., Cozzolino, D., Verdoliva, L., Riess, C.,
Thies, J., and Nießner, M. (2019). Faceforensics++:
Learning to detect manipulated facial images. arXiv
preprint arXiv:1901.08971.
Sabir, E., Cheng, J., Jaiswal, A., AbdAlmageed, W., Masi,
I., and Natarajan, P. (2019). Recurrent convolutional
strategies for face manipulation detection in videos.
CoRR, abs/1905.00582.
Sengupta, S., Curless, B., Kemelmacher-Shlizerman, I., and
Seitz, S. M. (2021). A light stage on every desk.
CoRR, abs/2105.08051.
Sun, Z., Han, Y., Hua, Z., Ruan, N., and Jia, W. (2021).
Improving the efficiency and robustness of deepfakes
detection through precise geometric features. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3609–
3618.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2015). Going deeper with convolutions.
In Computer Vision and Pattern Recognition (CVPR).
Thies, J., Zollh
¨
ofer, M., and Nießner, M. (2019). De-
ferred neural rendering: Image synthesis using neu-
ral textures. ACM Transactions on Graphics (TOG),
38(4):1–12.
Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., and
Nießner, M. (2016). Face2face: Real-time face cap-
ture and reenactment of rgb videos. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 2387–2395.
Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A.,
and Ortega-Garcia, J. (2020). Deepfakes and beyond:
A survey of face manipulation and fake detection. In-
formation Fusion, 64:131–148.
Wang, Y. and Dantcheva, A. (2020). A video is worth more
than 1000 lies. comparing 3dcnn approaches for de-
tecting deepfakes. In 2020 15th IEEE International
Conference on Automatic Face and Gesture Recogni-
tion (FG 2020), pages 515–519. IEEE.
Yamaguchi, S., Saito, S., Nagano, K., Zhao, Y., Chen,
W., Olszewski, K., Morishima, S., and Li, H. (2018).
High-fidelity facial reflectance and geometry infer-
ence from an unconstrained image. ACM Trans.
Graph., 37(4):162:1–162:14.
Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. (2016). Joint
face detection and alignment using multitask cascaded
convolutional networks. IEEE Signal Processing Let-
ters, 23(10):1499–1503.
VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications
574