REFERENCES
Arridge, S., Maass, P.,
¨
Oktem, O., and Sch
¨
onlieb, C.-B.
(2019). Solving inverse problems using data-driven
models. Acta Numerica, 28:1–174.
Butler, D. J., Wulff, J., Stanley, G. B., and Black, M. J.
(2012). A naturalistic open source movie for optical
flow evaluation. In Fitzgibbon, A., Lazebnik, S., Per-
ona, P., Sato, Y., and Schmid, C., editors, Computer
Vision – ECCV 2012, volume 7577 of LNCS, pages
611–625, Berlin, Heidelberg. Springer Berlin Heidel-
berg.
Chen, Y., Pock, T., Ranftl, R., and Bischof, H. (2013). Re-
visiting loss-specific training of filter-based mrfs for
image restoration. In Weickert, J., Hein, M., and
Schiele, B., editors, German Conference on Pattern
Recognition, volume 8142 of LNCS, pages 271–281,
Berlin, Heidelberg. Springer.
De los Reyes, J. C., Sch
¨
onlieb, C.-B., and Valkonen, T.
(2017). Bilevel parameter learning for higher-order
total variation regularisation models. Journal of Math-
ematical Imaging and Vision, 57(1):1–25.
Gatys, L., Ecker, A., and Bethge, M. (2016). A neural algo-
rithm of artistic style. Journal of Vision, 16(12):326–
326.
Gou, J., Yu, B., Maybank, S. J., and Tao, D. (2021). Knowl-
edge distillation: A survey. International Journal of
Computer Vision, 129(6):1789–1819.
Haefner, B., Peng, S., Verma, A., Qu
´
eau, Y., and Cremers,
D. (2020). Photometric depth super-resolution. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 42(10):2453–2464.
Haefner, B., Qu
´
eau, Y., M
¨
ollenhoff, T., and Cremers,
D. (2018). Fight ill-posedness with ill-posedness:
Single-shot variational depth super-resolution from
shading. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 164–174.
Hui, T.-W., Loy, C. C., and Tang, X. (2016). Depth map
super-resolution by deep multi-scale guidance. In
Leibe, B., Matas, J., Sebe, N., and Welling, M., ed-
itors, European Conference on Computer Vision –
ECCV 2016, volume 9907 of LNCS, pages 353–369,
Cham. Springer International Publishing.
Johnson, J., Alahi, A., and Fei-Fei, L. (2016). Perceptual
losses for real-time style transfer and super-resolution.
In European conference on computer vision, pages
694–711. Springer.
Kingma, D. P. and Ba, J. (2015). Adam: A method for
stochastic optimization. In ICLR (Poster).
Li, H., Schwab, J., Antholzer, S., and Haltmeier, M. (2020).
NETT: Solving inverse problems with deep neural
networks. Inverse Problems, 36(6):065005.
Lunz, S.,
¨
Oktem, O., and Sch
¨
onlieb, C.-B. (2018). Adver-
sarial regularizers in inverse problems. In Proceedings
of the 32nd International Conference on Neural In-
formation Processing Systems, NIPS’18, pages 8516–
8525, Red Hook, NY, USA. Curran Associates Inc.
Obmann, D., Nguyen, L., Schwab, J., and Haltmeier, M.
(2019). Sparse l
q
-regularization of inverse problems
using deep learning. arXiv:1908.03006 .
Riegler, G., Ferstl, D., R
¨
uther, M., and Bischof, H. (2016).
A deep primal dual for guided depth super-resolution.
In British Machine Vision Conference, United King-
dom. The British Machine Vision Association.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
net: Convolutional networks for biomedical image
segmentation. In Navab, N., Hornegger, J., Wells,
W. M., and Frangi, A. F., editors, Medical Image Com-
puting and Computer-Assisted Intervention – MICCAI
2015, volume 9351 of LNCS, pages 234–241, Cham.
Springer International Publishing.
Scharstein, D., Hirschm
¨
uller, H., Kitajima, Y., Krathwohl,
G., Ne
ˇ
si
´
c, N., Wang, X., and Westling, P. (2014).
High-resolution stereo datasets with subpixel-accurate
ground truth. In Jiang, X., Hornegger, J., and Koch,
R., editors, German Conference on Pattern Recog-
nition, volume 8753 of LNCS, pages 31–42, Cham.
Springer International Publishing.
Song, X., Dai, Y., Zhou, D., Liu, L., Li, W., Li, H., and
Yang, R. (2020). Channel attention based iterative
residual learning for depth map super-resolution. In
2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 5630–5639.
Voynov, O., Artemov, A., Egiazarian, V., Notchenko, A.,
Bobrovskikh, G., Zorin, D., and Burnaev, E. (2019).
Perceptual deep depth super-resolution. In Proceed-
ings of the IEEE International Conference on Com-
puter Vision, pages 5653–5663.
Zacharov, I., Arslanov, R., Gunin, M., Stefonishin,
D., Bykov, A., Pavlov, S., Panarin, O., Mal-
iutin, A., Rykovanov, S., and Fedorov, M. (2019).
“zhores”—petaflops supercomputer for data-driven
modeling, machine learning and artificial intelligence
installed in skolkovo institute of science and technol-
ogy. Open Engineering, 9(1):512–520.
APPENDIX
Network Tikhonov Regularization
Assumptions
(Li et al., 2020) prove well-posedness and conver-
gence of NETT regularization, provided that cer-
tain assumptions on regularizer and data fidelity term
hold.
We have tried to ensure fulfillment of this condi-
tions in our work. Conditions on data fidelity term are
not restrictive and hold for squared L
2
-norm distance,
while the conditions on regularizer term include:
1. Regularizer R (x) = ψ(Φ
V
(x)) is weakly lower
semicontinuous, which is guaranteed by condi-
tions:
• Linear operators A
l
are bounded;
• Non-linearities σ
l
are weakly continuous;
Can We Use Neural Regularization to Solve Depth Super-resolution?
589