ACKNOWLEDGEMENTS
This study was supported in part by the Translational
Research Institute (TRI), grant UL1 TR003107
received from the National Center for Advancing
Translational Sciences of the National Institutes of
Health (NIH) and award AWD00053499, Supporting
High Performance Computing in Clinical
Informatics. The content of this manuscript is solely
the responsibility of the authors and does not
necessarily represent the official views of the NIH.
REFERENCES
Akbik, A., Blythe, D., & Vollgraf, R. (2018). Contextual
String Embeddings for Sequence Labeling.
Alsentzer, E., Murphy, J., Boag, W., Weng, W.-H., Jin, D.,
Naumann, T., & McDermott, M. (2019). Publicly
Available Clinical BERT Embeddings.
Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T.
(2017). Enriching word vectors with subword
information. Transactions of the Association for
Computational Linguistics, 5, 135-146.
Burns, G. A., Li, X., & Peng, N. (2019). Building deep
learning models for evidence classification from the
open access biomedical literature. Database : the
journal of biological databases and curation, 2019,
baz034. doi: 10.1093/database/baz034
Catelli, R., Casola, V., De Pietro, G., Fujita, H., & Esposito,
M. (2021). Combining contextualized word
representation and sub-document level analysis through
Bi-LSTM+CRF architecture for clinical de-
identification. Knowledge-Based Systems, 213, 106649.
doi: https://doi.org/10.1016/j.knosys.2020.106649
Catelli, R., Gargiulo, F., Casola, V., De Pietro, G., Fujita,
H., & Esposito, M. (2020). Crosslingual named entity
recognition for clinical de-identification applied to a
COVID-19 Italian data set. Applied soft computing, 97,
106779-106779. doi: 10.1016/j.asoc.2020.106779
Devlin, J. e. a. (2019). Bert: pre-training of deep
bidirectional transformers for language understanding.
In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
Minneapolis, MN, USA. pp. 4171–4186. Association
for Computational Linguistics. https://
www.aclweb.org/anthology/N19-1423.
Dietterich, T. G. (1998). Approximate statistical tests for
comparing supervised classification learning
algorithms. Neural Comput., 10(7), 1895–1923. doi:
10.1162/089976698300017197
Habibi, M., Weber, L., Neves, M., Wiegandt, D. L., &
Leser, U. (2017). Deep learning with word embeddings
improves biomedical named entity recognition.
Bioinformatics, 33(14), i37-i48. doi: 10.1093/
bioinformatics/btx228
Huang, Z., Xu, W., & Yu, K. (2015). Bidirectional LSTM-
CRF Models for Sequence Tagging.
Jiang, M., Sanger, T., & Liu, X. (2019). Combining
Contextualized Embeddings and Prior Knowledge for
Clinical Named Entity Recognition: Evaluation Study.
JMIR Med Inform, 7(4), e14850. doi: 10.2196/14850
Khattak, F. K., Jeblee, S., Pou-Prom, C., Abdalla, M.,
Meaney, C., & Rudzicz, F. (2019). A survey of word
embeddings for clinical text. Journal of Biomedical
Informatics: X, 4, 100057. doi: https://doi.org/10.1016/
j.yjbinx.2019.100057
Lample, G., Ballesteros, M., Subramanian, S., Kawakami,
K., & Dyer, C. (2016). Neural Architectures for Named
Entity Recognition.
Li, J., Sun, A., Han, R., & Li, C. (2020). A Survey on Deep
Learning for Named Entity Recognition. IEEE
Transactions on Knowledge and Data Engineering, PP,
1-1. doi: 10.1109/TKDE.2020.2981314
Liu, Z., Yang, M., Wang, X., Chen, Q., Tang, B., Wang, Z.,
& Xu, H. (2017). Entity recognition from clinical texts
via recurrent neural network. BMC Med Inform Decis
Mak, 17(Suppl 2), 67-67. doi: 10.1186/s12911-017-
0468-7
Luo, L., Yang, Z., Yang, P., Zhang, Y., Wang, L., Wang, J.,
& Lin, H. (2018). A neural network approach to
chemical and gene/protein entity recognition in patents.
Journal of Cheminformatics, 10(1), 65. doi: 10.1186/
s13321-018-0318-3
Ma, X., & Hovy, E. (2016). End-to-end Sequence Labeling
via Bi-directional LSTM-CNNs-CRF.
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013).
Efficient Estimation of Word Representations in Vector
Space. http://arxiv.org/abs/1301.3781
Min, X., Zeng, W., Chen, N., Chen, T., & Jiang, R. (2017).
Chromatin accessibility prediction via convolutional
long short-term memory networks with k-mer
embedding. Bioinformatics, 33(14), i92-i101. doi:
10.1093/bioinformatics/btx234
Neamatullah, I., Douglass, M. M., Lehman, L.-w. H.,
Reisner, A., Villarroel, M., Long, W. J., . . . Clifford, G.
D. (2008). Automated de-identification of free-text
medical records. BMC Med Inform Decis Mak, 8(1), 32.
doi: 10.1186/1472-6947-8-32
Pennington, J., Socher, R., & Manning, C. (2014). Glove:
Global Vectors for Word Representation (Vol. 14).
Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark,
C., Lee, K., & Zettlemoyer, L. (2018). Deep
contextualized word representations.
Stubbs, A., & Uzuner, Ö. (2015). Annotating longitudinal
clinical narratives for de-identification: The 2014
i2b2/UTHealth corpus. J Biomed Inform, 58
Suppl(Suppl), S20-S29. doi: 10.1016/j.jbi.2015.07.020
Syed, M., Al-Shukri, S., Syed, S., Sexton, K., Greer, M. L.,
Zozus, M., Prior, F. (2021). DeIDNER Corpus:
Annotation of Clinical Discharge Summary Notes for
Named Entity Recognition Using BRAT Tool. Stud
Health Technol Inform, 281, 432-436. doi: 10.3233/
shti210195
Syed, M., Syed, S., Sexton, K., Syeda, H. B., Garza, M.,
Zozus, M., Prior, F. (2021). Application of Machine