Lecca, M. (2014). On the von Kries Model: Estimation,
Dependence on Light and Device, and Applications,
pages 95–135. Springer Netherlands, Dordrecht.
Lecca, M. (2020). Generalized equation for real-world im-
age enhancement by Milano Retinex family. J. Opt.
Soc. Am. A, 37(5):849–858.
Lecca, M. and Messelodi, S. (2019). Super: Milano retinex
implementation exploiting a regular image grid. JOSA
A, 36(8):1423–1432.
Li, C., Guo, C., Ren, W., Cong, R., Hou, J., Kwong, S., and
Tao, D. (2019a). An underwater image enhancement
benchmark dataset and beyond. IEEE Transactions on
Image Processing, 29:4376–4389.
Li, C., Guo, C., Ren, W., Cong, R., Hou, J., Kwong, S., and
Tao, D. (2019b). An underwater image enhancement
benchmark dataset and beyond. IEEE Transactions on
Image Processing, 29:4376–4389.
Li, C., Quo, J., Pang, Y., Chen, S., and Wang, J. (2016a).
Single underwater image restoration by blue-green
channels dehazing and red channel correction. In
IEEE Int. Conference on Acoustics, Speech and Signal
Processing (ICASSP), Shanghai, China, pages 1731–
1735.
Li, C.-Y., Guo, J.-C., Cong, R.-M., Pang, Y.-W., and Wang,
B. (2016b). Underwater image enhancement by de-
hazing with minimum information loss and histogram
distribution prior. IEEE Transactions on Image Pro-
cessing, 25(12):5664–5677.
Lu, H., Li, Y., and Serikawa, S. (2017). Computer vision for
ocean observing. In Artificial Intelligence and Com-
puter Vision, pages 1–16. Springer.
Manzanilla, A., Reyes, S., Garcia, M., Mercado, D., and
Lozano, R. (2019). Autonomous navigation for un-
manned underwater vehicles: Real-time experiments
using computer vision. IEEE Robotics and Automa-
tion Letters, 4(2):1351–1356.
Matos, A., Martins, A., Dias, A., Ferreira, B., Almeida,
J. M., Ferreira, H., Amaral, G., Figueiredo, A.,
Almeida, R., and Silva, F. (2016). Multiple robot op-
erations for maritime search and rescue in eurathlon
2015 competition. In OCEANS 2016-Shanghai, pages
1–7. IEEE.
McLellan, B. C. (2015). Sustainability assessment of deep
ocean resources. Procedia Environmental Sciences,
28:502–508. The 5th Sustainable Future for Human
Security (SustaiN 2014).
Panetta, K., Gao, C., and Agaian, S. (2015). Human-visual-
system-inspired underwater image quality measures.
IEEE Journal of Oceanic Engineering, 41(3):541–
551.
Pedersen, M., Bruslund Haurum, J., Gade, R., and Moes-
lund, T. B. (2019). Detection of marine animals in
a new underwater dataset with varying visibility. In
Proc. of the IEEE/CVF Conf. on Computer Vision
and Pattern Recognition Workshops, Long Beach, CA,
USA, pages 18–26.
Pedersen, M. and Hardeberg, J. Y. (2012). Full-reference
image quality metrics: Classification and evaluation.
Foundations and Trends in Computer Graphics and
Vision, 7(1):1–80.
Provenzi, E., Fierro, M., Rizzi, A., De Carli, L., Gadia, D.,
and Marini, D. (2007). Random Spray Retinex: A
new Retinex implementation to investigate the local
properties of the model. Trans. Img. Proc., 16(1):162–
171.
Rizzi, A., Algeri, T., Medeghini, G., and Marini, D. (2004).
A proposal for contrast measure in digital images. In
Conference on colour in graphics, imaging, and vi-
sion, Aachen, Germany, volume 2004, pages 187–
192. Society for Imaging Science and Technology.
Rizzi, A. and Bonanomi, C. (2017). Milano Retinex fam-
ily. Journal of Electronic Imaging, 26(3):031207–
031207.
Selby, W., Corke, P., and Rus, D. (2011). Autonomous
aerial navigation and tracking of marine animals. In
Proc. of the Australian Conference on Robotics and
Automation (ACRA), Melbourne, Australia.
Serikawa, S. and Lu, H. (2014). Underwater image dehaz-
ing using joint trilateral filter. Computers & Electrical
Engineering, 40(1):41–50.
Sheehan, E. V., Bridger, D., Nancollas, S. J., and Pittman,
S. J. (2020). Pelagicam: a novel underwater imag-
ing system with computer vision for semi-automated
monitoring of mobile marine fauna at offshore struc-
tures. Environmental monitoring and assessment,
192(1):1–13.
Shi, X., Ueno, K., Oshikiri, T., Sun, Q., Sasaki, K., and
Misawa, H. (2018). Enhanced water splitting under
modal strong coupling conditions. Nature nanotech-
nology, 13(10):953–958.
Vasamsetti, S., Mittal, N., Neelapu, B. C., and Sardana,
H. K. (2017). Wavelet based perspective on vari-
ational enhancement technique for underwater im-
agery. Ocean Engineering, 141:88–100.
Wang, N., Zheng, H., and Zheng, B. (2017). Underwater
image restoration via maximum attenuation identifi-
cation. IEEE Access, 5:18941–18952.
Wang, Y., Song, W., Fortino, G., Qi, L.-Z., Zhang, W.,
and Liotta, A. (2019). An experimental-based review
of image enhancement and image restoration meth-
ods for underwater imaging. IEEE Access, 7:140233–
140251.
Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.
(2004). Image quality assessment: from error visi-
bility to structural similarity. IEEE transactions on
image processing, 13(4):600–612.
Yang, M. and Sowmya, A. (2015). An underwater color
image quality evaluation metric. IEEE Transactions
on Image Processing, 24(12):6062–6071.
Yin, F. (2021). Inspection robot for submarine pipeline
based on machine vision. Journal of Physics: Con-
ference Series, 1952:022034.
Zhao, X., Jin, T., and Qu, S. (2015). Deriving inherent op-
tical properties from background color and underwa-
ter image enhancement. Ocean Engineering, 94:163–
172.
Zuiderveld, K. (1994). Contrast limited adaptive histogram
equalization. Graphics gems, pages 474–485.