REFERENCES
Aljondi, R., & Alghamdi, S. (2020). Diagnostic value of
imaging modalities for COVID-19: Scoping review.
Journal of Medical Internet Research, 22(8).
https://doi.org/10.2196/19673
Chollet, F. (2016). Xception: Deep Learning with
Depthwise Separable Convolutions. SAE International
Journal of Materials and Manufacturing, 7(3), 1251–
1258.
COVID-19 Radiography Database | Kaggle. (n.d.).
Retrieved November 1, 2021, from https://www.
kaggle.com/tawsifurrahman/covid19-radiography-
database
Elmidaoui, S., Cheikhi, L., Idri, A., & Abran, A. (2020).
Predicting software maintainability using ensemble
techniques and stacked generalization. CEUR
Workshop Proceedings, 2725, 1–16.
Emerson, P. (2013). The original Borda count and partial
voting. Social Choice and Welfare, 40(2), 353–358.
https://doi.org/10.1007/s00355-011-0603-9
Goudouris, E. S. (2021). Laboratory diagnosis of COVID-
19. Jornal de Pediatria, 97(1), 7–12.
https://doi.org/10.1016/j.jped.2020.08.001
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity
mappings in deep residual networks. Lecture Notes in
Computer Science (Including Subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in
Bioinformatics), 9908 LNCS, 630–645.
https://doi.org/10.1007/978-3-319-46493-0_38
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K.
Q. (2017). Densely connected convolutional networks.
Proceedings - 30th IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, 2017-
Janua, 2261–2269. https://doi.org/10.1109/CVPR.20
17.243
Huang, S. C., Pareek, A., Seyyedi, S., Banerjee, I., &
Lungren, M. P. (2020). Fusion of medical imaging and
electronic health records using deep learning: a
systematic review and implementation guidelines. Npj
Digital Medicine, 3(1). https://doi.org/10.1038/s41746-
020-00341-z
Islam, M. M., Karray, F., Alhajj, R., & Zeng, J. (2021). A
Review on Deep Learning Techniques for the
Diagnosis of Novel Coronavirus (COVID-19). IEEE
Access, 9, 30551–30572. https://doi.org/10.1109/
ACCESS.2021.3058537
Rahimzadeh, M., & Attar, A. (2020). A modified deep
convolutional neural network for detecting COVID-19
and pneumonia from chest X-ray images based on the
concatenation of Xception and ResNet50V2.
Informatics in Medicine Unlocked, 19, 100360.
https://doi.org/10.1016/j.imu.2020.100360
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen,
L. C. (2018). MobileNetV2: Inverted Residuals and
Linear Bottlenecks. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, 4510–4520. https://doi.org/10.1109/
CVPR.2018.00474
Simonyan, K., & Zisserman, A. (2014). Very Deep
Convolutional Networks for Large-Scale Image
Recognition. 3rd International Conference on Learning
Representations, ICLR 2015 - Conference Track
Proceedings, 1–14.
Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A.
(2017). Inception-v4, inception-ResNet and the impact
of residual connections on learning. 31st AAAI
Conference on Artificial Intelligence, AAAI 2017,
4278–4284.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna,
Z. (2016). Rethinking the Inception Architecture for
Computer Vision. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, 2016-Decem, 2818–2826. https://doi.org/
10.1109/CVPR.2016.308
Tantithamthavorn, C., McIntosh, S., Hassan, A. E., &
Matsumoto, K. (2019). The Impact of Automated
Parameter Optimization on Defect Prediction Models.
IEEE Transactions on Software Engineering, 45(7),
683–711. https://doi.org/10.1109/TSE.2018.2794977
Weekly epidemiological update on COVID-19 - 19 October
2021. (n.d.). Retrieved October 31, 2021, from
https://www.who.int/publications/m/item/weekly-
epidemiological-update-on-covid-19---19-october-
2021
Wu, X., Hui, H., Niu, M., Li, L., Wang, L., He, B., Yang,
X., Li, L., Li, H., Tian, J., & Zha, Y. (2020). Deep
learning-based multi-view fusion model for screening
2019 novel coronavirus pneumonia: A multicentre
study. European Journal of Radiology, 128(March), 1–
9. https://doi.org/10.1016/j.ejrad.2020.109041
Xu, M., Ouyang, L., Han, L., Sun, K., Yu, T., Li, Q., Tian,
H., Safarnejad, L., Zhang, H., Gao, Y., Bao, F. S., Chen,
Y., Robinson, P., Ge, Y., Zhu, B., Liu, J., & Chen, S.
(2021). Accurately differentiating between patients
with COVID-19, patients with other viral infections,
and healthy individuals: Multimodal late fusion
learning approach. Journal of Medical Internet
Research, 23(1), 1–17. https://doi.org/10.2196/25535
Yang, X., He, X., Zhao, J., Zhang, Y., Zhang, S., & Xie, P.
(2020). COVID-CT-Dataset: A CT Scan Dataset about
COVID-19. http://arxiv.org/abs/2003.13865
Zhang, Y. D., Zhang, Z., Zhang, X., & Wang, S. H. (2021).
MIDCAN: A multiple input deep convolutional
attention network for Covid-19 diagnosis based on
chest CT and chest X-ray. Pattern Recognition Letters,
150, 8–16. https://doi.org/10.1016/j.patrec.2021.06.021
Zhou, J., Zhang, X., Zhu, Z., Lan, X., Fu, L., Wang, H., &
Wen, H. (2021). Cohesive Multi-modality Feature
Learning and Fusion for COVID-19 Patient Severity
Prediction. IEEE Transactions on Circuits and Systems
for Video Technology
, 1–16. https://doi.org/10.1109/
TCSVT.2021.3063952