ACKNOWLEDGEMENTS
Research was supported by Grant PGC2018-097769-
B-C22 from the Spanish Ministry of Science and In-
novation and by the Ministerio de Econom
´
ıa y Com-
petitividad and the European Union (via ERDF funds)
through the research project (TIN2017-84968-R).
REFERENCES
Antonova, E., Parslow, D., Brammer, M., Simmons, A.,
Williams, S., Dawson, G. R., and Morris, R. (2011).
Scopolamine disrupts hippocampal activity during al-
locentric spatial memory in humans: an fMRI study
using a virtual reality analogue of the morris water
maze. Journal of Psychopharmacology, 25(9):1256–
1265.
Astur, R. S., Ortiz, M. L., and Sutherland, R. J. (1998). A
characterization of performance by men and women in
a virtual morris water task:: A large and reliable sex
difference. Behavioural Brain Research, 93(1):185–
190.
Astur, R. S., Tropp, J., Sava, S., Constable, R. T., and
Markus, E. J. (2004). Sex differences and correla-
tions in a virtual morris water task, a virtual radial
arm maze, and mental rotation. Behavioural Brain
Research, 151(1):103–115.
Commins, S., Duffin, J., Chaves, K., Leahy, D., Corcoran,
K., Caffrey, M., Keenan, L., Finan, D., and Thorn-
berry, C. (2020). NavWell: A simplified virtual-
reality platform for spatial navigation and memory ex-
periments. Behavior Research Methods, 52(3):1189–
1207.
D’Hooge, R. and De Deyn, P. P. (2001). Applications of the
morris water maze in the study of learning and mem-
ory. Brain Research Reviews, 36(1):60–90.
Falck-Ytter, T., B
¨
olte, S., and Gredeb
¨
ack, G. (2013). Eye
tracking in early autism research. Journal of Neurode-
velopmental Disorders, 5(1):28.
Hagita, K., Matsumoto, S., and Ota, K. (2019). Study of
commodity VR for computational material sciences.
4(2):3990–3999.
HTC (2021). Htc vive pro eye overview. Accessed on 2021-
10-15.
Kiefer, P., Giannopoulos, I., Raubal, M., and Duchowski,
A. (2017). Eye tracking for spatial research: Cogni-
tion, computation, challenges. Spatial Cognition &
Computation, 17(1):1–19.
Lattal, K. A., Kuroda, T., and Cook, J. E. (2020). Early ex-
tinction effects following intermittent reinforcement:
Little evidence of extinction bursts. Journal of the Ex-
perimental Analysis of Behavior, 114(1).
Livingstone-Lee, S. A., Murchison, S., Zeman, P. M.,
Gandhi, M., van Gerven, D., Stewart, L., Livingston,
N. J., and Skelton, R. W. (2011). Simple gaze analysis
and special design of a virtual morris water maze pro-
vides a new method for differentiating egocentric and
allocentric navigational strategy choice. Behavioural
Brain Research, 225(1):117–125.
Machado, M. L., Lef
`
evre, N., Philoxene, B., Le Gall, A.,
Madeleine, S., Fleury, P., Smith, P. F., and Besnard,
S. (2019). New software dedicated to virtual mazes
for human cognitive investigations. Journal of Neuro-
science Methods, 327:108388.
Malpica, S., Serrano, A., Gutierrez, D., and Masia, B.
(2020). Auditory stimuli degrade visual performance
in virtual reality. Scientific Reports, 10(1):12363.
Marcos, M.-C. and Gonz
´
alez-Caro, C. (2010). Compor-
tamiento de los usuarios en la p
´
agina de resultados de
los buscadores. un estudio basado en eye tracking.
Morris, R. (1984). Developments of a water-maze proce-
dure for studying spatial learning in the rat. Journal
of Neuroscience Methods, 11(1):47–60.
Mueller, S. C., Jackson, C. P. T., and Skelton, R. W. (2008).
Sex differences in a virtual water maze: An eye track-
ing and pupillometry study. Behavioural Brain Re-
search, 193(2):209–215.
NatureManufacture (2021). Forest environment - dynamic
nature. Accessed on 2021-10-15.
Newhouse, P., Newhouse, C., and Astur, R. S. (2007).
Sex differences in visual-spatial learning using a vir-
tual water maze in pre-pubertal children. Behavioural
Brain Research, 183(1):1–7.
Newman, E. L., Caplan, J. B., Kirschen, M. P., Korolev,
I. O., Sekuler, R., and Kahana, M. J. (2007). Learning
your way around town: How virtual taxicab drivers
learn to use both layout and landmark information.
Cognition, 104(2):231–253.
Piper, B. J., Acevedo, S. F., Craytor, M. J., Murray,
P. W., and Raber, J. (2010). The use and validation
of the spatial navigation memory island test in pri-
mary school children. Behavioural Brain Research,
210(2):257–262.
Roth, D., Purps, C. F., and Neumann, W.-J. (2020). A
virtual morris water maze to study neurodegenarative
disorders. In 2020 IEEE International Symposium
on Mixed and Augmented Reality Adjunct (ISMAR-
Adjunct), pages 141–146. IEEE.
SCAC-IRIB (2020). Mwm with rats image reference. Ac-
cessed on 2021-11-02.
Sitzmann, V., Serrano, A., Pavel, A., Agrawala, M., Gutier-
rez, D., Masia, B., and Wetzstein, G. (2018). Saliency
in VR: How do people explore virtual environments?
IEEE Transactions on Visualization and Computer
Graphics, 24(4):1633–1642.
Skinner, B. (2019). The behavior of organisms: An experi-
mental analysis.
Spiers, H. J. and Maguire, E. A. (2008). The dynamic nature
of cognition during wayfinding. Journal of Environ-
mental Psychology, 28(3):232–249.
Thornberry, C., Cimadevilla, J. M., and Commins, S.
(2021). Virtual morris water maze: opportunities and
challenges. Reviews in the Neurosciences.
Unity (2021). Unity game engine. Accessed on 2021-10-15.
University, L. (2014). Eye tracking image reference. Ac-
cessed on 2021-11-02.
Valve (2021). Steam vr sdk for unity. Accessed on 2021-
10-15.
A Preliminary Development of the Morris Maze Procedure in Virtual Reality
267