feedback. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4733–
4742.
Charco, J. L., Sappa, A. D., Vintimilla, B. X., and Vele-
saca, H. O. (2021). Camera pose estimation in multi-
view environments: From virtual scenarios to the real
world. Image and Vision Computing, 110:104182.
Charco, J. L., Vintimilla, B. X., and Sappa, A. D. (2018).
Deep learning based camera pose estimation in multi-
view environment. In 2018 14th International Confer-
ence on Signal-Image Technology & Internet-Based
Systems (SITIS), pages 224–228. IEEE.
Fang, H.-S., Xie, S., Tai, Y.-W., and Lu, C. (2017). Rmpe:
Regional multi-person pose estimation. In Proceed-
ings of the IEEE international conference on com-
puter vision, pages 2334–2343.
He, Y., Yan, R., Fragkiadaki, K., and Yu, S.-I. (2020).
Epipolar transformers. In Proceedings of the ieee/cvf
conference on computer vision and pattern recogni-
tion, pages 7779–7788.
Hofbauer, M., Kuhn, C. B., Meng, J., Petrovic, G., and
Steinbach, E. (2020). Multi-view region of inter-
est prediction for autonomous driving using semi-
supervised labeling. In 2020 IEEE 23rd Interna-
tional Conference on Intelligent Transportation Sys-
tems (ITSC), pages 1–6. IEEE.
Ionescu, C., Papava, D., Olaru, V., and Sminchisescu, C.
(2014). Human3.6m: Large scale datasets and pre-
dictive methods for 3d human sensing in natural envi-
ronments. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 36(7):1325–1339.
Iskakov, K., Burkov, E., Lempitsky, V., and Malkov, Y.
(2019). Learnable triangulation of human pose. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 7718–7727.
Newell, A., Yang, K., and Deng, J. (2016). Stacked hour-
glass networks for human pose estimation. In Euro-
pean conference on computer vision, pages 483–499.
Springer.
Qiu, H., Wang, C., Wang, J., Wang, N., and Zeng, W.
(2019). Cross view fusion for 3d human pose estima-
tion. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 4342–4351.
Remelli, E., Han, S., Honari, S., Fua, P., and Wang, R.
(2020). Lightweight multi-view 3d pose estimation
through camera-disentangled representation. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6040–6049.
Sarmadi, H., Mu
˜
noz-Salinas, R., Berb
´
ıs, M., and Medina-
Carnicer, R. (2019). Simultaneous multi-view camera
pose estimation and object tracking with squared pla-
nar markers. IEEE Access, 7:22927–22940.
Sun, K., Xiao, B., Liu, D., and Wang, J. (2019). Deep high-
resolution representation learning for human pose es-
timation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
5693–5703.
Tang, C., Ling, Y., Yang, X., Jin, W., and Zheng, C. (2018).
Multi-view object detection based on deep learning.
Applied Sciences, 8(9):1423.
Tian, C., Xu, Y., Fei, L., Wang, J., Wen, J., and Luo, N.
(2019). Enhanced cnn for image denoising. CAAI
Transactions on Intelligence Technology, 4(1):17–23.
Tompson, J., Goroshin, R., Jain, A., LeCun, Y., and Bregler,
C. (2015). Efficient object localization using convo-
lutional networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 648–656.
Toshev, A. and Szegedy, C. (2014). Deeppose: Human pose
estimation via deep neural networks. In Proceedings
of the IEEE conference on computer vision and pat-
tern recognition, pages 1653–1660.
Wei, S.-E., Ramakrishna, V., Kanade, T., and Sheikh, Y.
(2016). Convolutional pose machines. In Proceed-
ings of the IEEE conference on Computer Vision and
Pattern Recognition, pages 4724–4732.
Wu, M., Yue, H., Wang, J., Huang, Y., Liu, M., Jiang,
Y., Ke, C., and Zeng, C. (2020). Object detection
based on rgc mask r-cnn. IET Image Processing,
14(8):1502–1508.
Xiao, B., Wu, H., and Wei, Y. (2018). Simple baselines
for human pose estimation and tracking. In Proceed-
ings of the European conference on computer vision
(ECCV), pages 466–481.
Xie, H., Yao, H., Sun, X., Zhou, S., and Zhang, S. (2019).
Pix2vox: Context-aware 3d reconstruction from sin-
gle and multi-view images. In Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion, pages 2690–2698.
VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications
862