Li, Y., Hu, S.-h., and Li, B. (2016). Recognizing unseen ac-
tions in a domain-adapted embedding space. In 2016
IEEE International Conference on Image Processing
(ICIP), pages 4195–4199. IEEE.
Liu, J., Kuipers, B., and Savarese, S. (2011). Recognizing
human actions by attributes. In CVPR 2011, pages
3337–3344. IEEE.
Mandal, D., Narayan, S., Dwivedi, S. K., Gupta, V.,
Ahmed, S., Khan, F. S., and Shao, L. (2019). Out-of-
distribution detection for generalized zero-shot action
recognition. In Proceedings of CVPR, pages 9985–
9993.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In Advances in
neural information processing systems, pages 3111–
3119.
Mishra, A., Pandey, A., and Murthy, H. A. (2020). Zero-
shot learning for action recognition using synthesized
features. Neurocomputing, 390:117–130.
Mishra, A., Verma, V. K., Reddy, M. S. K., Arulkumar, S.,
Rai, P., and Mittal, A. (2018). A generative approach
to zero-shot and few-shot action recognition. In 2018
IEEE Winter Conference on WACV, pages 372–380.
IEEE.
Narayan, S., Gupta, A., Khan, F. S., Snoek, C. G., and
Shao, L. (2020). Latent embedding feedback and dis-
criminative features for zero-shot classification. In
Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part XXII 16, pages 479–495. Springer.
Soomro, K., Zamir, A. R., and Shah, M. (2012). Ucf101:
A dataset of 101 human actions classes from videos in
the wild. arXiv preprint arXiv:1212.0402.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2015). Going deeper with convolutions.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9.
Verma, V. K., Arora, G., Mishra, A., and Rai, P. (2018).
Generalized zero-shot learning via synthesized exam-
ples. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 4281–
4289.
Wang, H. and Schmid, C. (2013). Action recognition with
improved trajectories. In Proceedings of IEEE ICCV,
pages 3551–3558.
Wang, Q. and Chen, K. (2017). Alternative semantic rep-
resentations for zero-shot human action recognition.
In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 87–
102. Springer.
Xian, Y., Akata, Z., Sharma, G., Nguyen, Q., Hein, M., and
Schiele, B. (2016). Latent embeddings for zero-shot
classification. In Proceedings of CVPR, pages 69–77.
Xian, Y., Lorenz, T., Schiele, B., and Akata, Z. (2018). Fea-
ture generating networks for zero-shot learning. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 5542–5551.
Xian, Y., Schiele, B., and Akata, Z. (2017). Zero-shot
learning-the good, the bad and the ugly. In Proceed-
ings of the IEEE Conference on CVPR, pages 4582–
4591.
Xian, Y., Sharma, S., Schiele, B., and Akata, Z. (2019).
f-vaegan-d2: A feature generating framework for any-
shot learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 10275–10284.
Xiang, H., Xie, C., Zeng, T., and Yang, Y. (2021).
Multi-knowledge fusion for new feature generation
in generalized zero-shot learning. arXiv preprint
arXiv:2102.11566.
Xu, X., Hospedales, T., and Gong, S. (2015). Semantic
embedding space for zero-shot action recognition. In
2015 IEEE International Conference on Image Pro-
cessing (ICIP), pages 63–67. IEEE.
Combining Text and Image Knowledge with GANs for Zero-Shot Action Recognition in Videos
631