Recognition. Florence, Italy: Association for
Computational Linguistics.
Fan, Y., Wen, A., Shen, F., Sohn, S., Liu, H., & Wang, L.
(2019). Evaluating the Impact of Dictionary Updates on
Automatic Annotations Based on Clinical NLP
Systems. AMIA Jt Summits Transl Sci Proc, 2019, 714-
721.
Griffis, D., Shivade, C., Fosler-Lussier, E., & Lai, A. M.
(2016). A Quantitative and Qualitative Evaluation of
Sentence Boundary Detection for the Clinical Domain.
AMIA Jt Summits Transl Sci Proc, 2016, 88-97.
Harkema, H., Chapman, W. W., Saul, M., Dellon, E. S.,
Schoen, R. E., & Mehrotra, A. (2011). Developing a
natural language processing application for measuring
the quality of colonoscopy procedures. J Am Med
Inform Assoc, 18 Suppl 1(Suppl 1), i150-156.
doi:10.1136/amiajnl-2011-000431
Huang, K., Altosaar, J., & Ranganath, R. (2019).
ClinicalBERT: Modeling Clinical Notes and Predicting
Hospital Readmission.
Huang, Z., Xu, W., & Yu, K. J. A. (2015). Bidirectional
LSTM-CRF Models for Sequence Tagging.
abs/1508.01991.
Jiang, M., Sanger, T., & Liu, X. (2019). Combining
Contextualized Embeddings and Prior Knowledge for
Clinical Named Entity Recognition: Evaluation Study.
JMIR Med Inform, 7(4), e14850. doi:10.2196/14850
Jiang, X., Pan, S., Jiang, J., & Long, G. (2018, 8-13 July
2018). Cross-Domain Deep Learning Approach For
Multiple Financial Market Prediction. Paper presented
at the 2018 International Joint Conference on Neural
Networks (IJCNN).
Kalyan, K. S., & Sangeetha, S. (2021). BertMCN: Mapping
colloquial phrases to standard medical concepts using
BERT and highway network. Artif Intell Med, 112,
102008. doi:https://doi.org/10.1016/j.artmed.2021.10
2008
Kim, K., Polite, B., Hedeker, D., Liebovitz, D., Randal, F.,
Jayaprakash, M., Lam, H. (2020). Implementing a
multilevel intervention to accelerate colorectal cancer
screening and follow-up in federally qualified health
centers using a stepped wedge design: a study protocol.
Implementation Science, 15(1), 96. doi:10.1186/
s13012-020-01045-4
Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., &
Kang, J. (2019). BioBERT: a pre-trained biomedical
language representation model for biomedical text
mining. Bioinformatics (Oxford, England).
doi:10.1093/bioinformatics/btz682
Lee, J. K., Jensen, C. D., Levin, T. R., Zauber, A. G.,
Doubeni, C. A., Zhao, W. K., & Corley, D. A. (2019).
Accurate Identification of Colonoscopy Quality and
Polyp Findings Using Natural Language Processing. J
Clin Gastroenterol, 53(1), e25-e30. doi:10.1097/
mcg.0000000000000929
Liang, D., Xu, W., & Zhao, Y. (2017). Combining Word-
Level and Character-Level Representations for
Relation Classification of Informal Text. Paper
presented at the Rep4NLP@ACL.
Liang, H., Sun, X., Sun, Y., & Gao, Y. (2018). Correction
to: Text feature extraction based on deep learning: a
review. EURASIP Journal on Wireless
Communications and Networking, 2018(1), 42.
doi:10.1186/s13638-018-1056-y
Malte, A., & Ratadiya, P. (2019). Evolution of transfer
learning in natural language processing. CoRR,
abs/1910.07370.
Mehrotra, A., Dellon, E. S., Schoen, R. E., Saul, M.,
Bishehsari, F., Farmer, C., & Harkema, H. (2012).
Applying a natural language processing tool to
electronic health records to assess performance on
colonoscopy quality measures. Gastrointest Endosc,
75(6), 1233-1239.e1214. doi:10.1016/j.gie.2012.01.0
45
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013).
Efficient Estimation of Word Representations in Vector
Space. Paper presented at the ICLR.
Nayor, J., Borges, L. F., Goryachev, S., Gainer, V. S., &
Saltzman, J. R. (2018). Natural Language Processing
Accurately Calculates Adenoma and Sessile Serrated
Polyp Detection Rates. Dig Dis Sci, 63(7), 1794-1800.
doi:10.1007/s10620-018-5078-4
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Chintala, S. (2019). PyTorch: An
Imperative Style, High-Performance Deep Learning
Library. Paper presented at the NeurIPS.
Patterson, O. V., Forbush, T. B., Saini, S. D., Moser, S. E.,
& DuVall, S. L. (2015). Classifying the Indication for
Colonoscopy Procedures: A Comparison of NLP
Approaches in a Diverse National Healthcare System.
Stud Health Technol Inform, 216, 614-618.
Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark,
C., Lee, K., & Zettlemoyer, L. (2018, jun). Deep
Contextualized Word Representations, New Orleans,
Louisiana.
Raju, G. S., Lum, P. J., Slack, R. S., Thirumurthi, S., Lynch,
P. M., Miller, E., Ross, W. A. (2015). Natural language
processing as an alternative to manual reporting of
colonoscopy quality metrics. Gastrointest Endosc,
82(3), 512-519. doi:10.1016/j.gie.2015.01.049
Rex, D. K., Schoenfeld, P. S., Cohen, J., Pike, I. M., Adler,
D. G., Fennerty, M. B., Weinberg, D. S. (2015). Quality
indicators for colonoscopy. Gastrointest Endosc, 81(1),
31-53. doi:10.1016/j.gie.2014.07.058
Roberts, A., Gaizauskas, R., Hepple, M., Davis, N.,
Demetriou, G., Guo, Y., Wheeldin, B. (2007). The
CLEF corpus: semantic annotation of clinical text.
AMIA ... Annual Symposium proceedings. AMIA
Symposium, 2007, 625-629.
Schmidt, J., Marques, M. R. G., Botti, S., & Marques, M.
A. L. (2019). Recent advances and applications of
machine learning in solid-state materials science. npj
Computational Materials, 5(1), 83.
doi:10.1038/s41524-019-0221-0
Sharma, S., & Daniel, R., Jr. (2019). BioFLAIR: Pretrained
Pooled Contextualized Embeddings for Biomedical
Sequence Labeling Tasks. arXiv e-prints,
arXiv:1908.05760.