clinical neurophysiology. American Journal of EEG
Technology, 1(1):13–19.
Chatrian, G. E., Lettich, E., and Nelson, P. L. (1985).
Ten percent electrode system for topographic studies
of spontaneous and evoked eeg activities. American
Journal of EEG Technology, 25(2):83–92.
Colton, D. and Kress, R. (2019). Inverse Acoustic and Elec-
tromagnetic Scattering Theory. Springer, 4 edition.
Edelman, B. J., Baxter, B., and He, B. (2016). Eeg source
imaging enhances the decoding of complex right-hand
motor imagery tasks. IEEE Transactions on Biomedi-
cal Engineering, 63:4–14.
Friston, K., Harrison, L., Daunizeau, J., Kiebel, S., Phillips,
C., Trujillo-Barreto, N., Henson, R., Flandin, G., and
Mattout, J. (2008). Multiple sparse priors for the
M/EEG inverse problem. NeuroImage, 39(3):1104–
1120.
Gramann, K., Gwin, J. T., Ferris, D. P., Oie, K., Jung, T.-P.,
Lin, C.-T., Liao, L.-D., and Makeig, S. (2011). Cogni-
tion in action: imaging brain/body dynamics in mobile
humans. 22(6):593–608.
Hallez, H., Vanrumste, B., Grech, R., Muscat, J., De Clercq,
W., Vergult, A., D’Asseler, Y., Camilleri, K. P., Fabri,
S. G., Van Huffel, S., and Lemahieu, I. (2007). Re-
view on solving the forward problem in EEG source
analysis. Journal of NeuroEngineering and Rehabili-
tation, 4.
H
¨
am
¨
al
¨
ainen, M. S. and Ilmoniemi, R. J. (1994). Interpret-
ing magnetic fields of the brain: minimum norm esti-
mates. Medical & Biological Engineering & Comput-
ing, 32(1):35–42.
Huang, Y., Parra, L. C., and Haufe, S. (2016). The new
york head—a precise standardized volume conduc-
tor model for eeg source localization and tes target-
ing. NeuroImage, 140:150 – 162. Transcranial electric
stimulation (tES) and Neuroimaging.
Ilmoniemi, R. J. and Sarvas, J. (2019). Brain Signals:
Physics and Mathematics of MEG and EEG. The MIT
Press.
Iwaki, S. and Ueno, S. (1998). Weighted minimum-norm
source estimation of magnetoencephalography utiliz-
ing the temporal information of the measured data.
Journal of Applied Physics, 83(11):6441.
Jasper, H. (1958). Ten-Twenty Electrode System of the In-
ternational Federation. Electroencephalography and
Clinical Neurophysiology, 10:371–375.
Jatoi, M. A. and Kamel, N. (2018). Brain source localiza-
tion using reduced eeg sensors. Signal, Image and
Video Processing, 12(8):1447–1454.
Jatoi, M. A., Kamel, N., Malik, A. S., Faye, I., and Be-
gum, T. (2014). A survey of methods used for source
localization using eeg signals. Biomedical Signal Pro-
cessing and Control, 11:42 – 52.
Lau-Zhu, A., Lau, M. P., and McLoughlin, G. (2019). Mo-
bile EEG in research on neurodevelopmental disor-
ders: Opportunities and challenges. Developmental
Cognitive Neuroscience, 36:100635.
Lindgren, J. T. (2017). As above, so below? Towards un-
derstanding inverse models in BCI. Journal of Neural
Engineering, 15(1):012001.
M
¨
akel
¨
a, N., Stenroos, M., Sarvas, J., and Ilmoniemi, R. J.
(2018). Truncated RAP-MUSIC (TRAP-MUSIC) for
MEG and EEG source localization. NeuroImage,
167:73–83.
Michel, C. M. and Brunet, D. (2019). EEG source imaging:
A practical review of the analysis steps. Frontiers in
Neurology, 10(APR):325.
Mosher, J. C. and Leahy, R. M. (1998). Recursive MU-
SIC: A framework for EEG and MEG source localiza-
tion. IEEE Transactions on Biomedical Engineering,
45(11):1342–1354.
O’Leary, J. (1970). Hans berger on the electroencephalo-
gram of man. the fourteen original reports on the hu-
man electroencephalogram. translated from the ger-
man and edited by pierre gloor. Science, 168:562–563.
Oostenveld, R. and Praamstra, P. (2001). The five
percent electrode system for high-resolution EEG
and ERP measurements. Clinical Neurophysiology,
112(4):713–719.
Pascual-Marqui, R. D. (2002). Standardized low-resolution
brain electromagnetic tomography (sLORETA): Tech-
nical details. Methods and Findings in Experimental
and Clinical Pharmacology, 24(SUPPL. D):5–12.
Phillips, J. W., Leahy, R. M., Mosher, J. C., and Timsari,
B. (1997). Imaging neural activity using MEG and
EEG. IEEE Engineering in Medicine and Biology
Magazine, 16(3):34–42.
Seeck, M., Koessler, L., Bast, T., Leijten, F., Michel, C.,
Baumgartner, C., He, B., and Beniczky, S. (2017). The
standardized EEG electrode array of the IFCN.
Sohrabpour, A., Lu, Y., Kankirawatana, P., Blount, J., Kim,
H., and He, B. (2015). Effect of EEG electrode num-
ber on epileptic source localization in pediatric pa-
tients. Clinical Neurophysiology, 126(3):472–480.
Soler, A., Giraldo, E., and Molinas, M. (2020a). Low-
density EEG for Source Activity Reconstruction us-
ing Partial Brain Models. In Proceedings of the
13th International Joint Conference on Biomedical
Engineering Systems and Technologies, pages 54–63.
SCITEPRESS - Science and Technology Publications.
Soler, A., Mu
˜
noz-Guti
´
errez, P. A., Bueno-L
´
opez, M., Gi-
raldo, E., and Molinas, M. (2020b). Low-Density
EEG for Neural Activity Reconstruction Using Mul-
tivariate Empirical Mode Decomposition. Frontiers in
Neuroscience, 14:175.
Song, J., Davey, C., Poulsen, C., Luu, P., Turovets, S., An-
derson, E., Li, K., and Tucker, D. (2015). EEG source
localization: Sensor density and head surface cover-
age. Journal of Neuroscience Methods, 256:9–21.
Wolf, L. and Shashua, A. (2005). Feature Selection for
Unsupervised and Supervised Inference: The Emer-
gence of Sparsity in a Weight-Based Approach * Am-
non Shashua. Journal of Machine Learning Research,
6:1855–1887.
Relevance-based Channel Selection for EEG Source Reconstruction: An Approach to Identify Low-density Channel Subsets
183