Hitawala, S. (2018). Evaluating resnext model architecture
for image classification. ArXiv.
Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
de Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. (2019). Parameter-efficient transfer learning
for nlp. In ICML.
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., Andreetto, M., and Adam,
H. (2017). Mobilenets: Efficient convolutional neu-
ral networks for mobile vision applications. ArXiv.
Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and
Bengio, Y. (2017). Quantized neural networks: Train-
ing neural networks with low precision weights and
activations. ArXiv.
Iandola, F. N., Moskewicz, M. W., Ashraf, K., Han, S.,
Dally, W. J., and Keutzer, K. (2016). Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and
¡1mb model size. ArXiv.
Jin, H., Zhang, S., Zhu, X., Tang, Y., Lei, Z., and Li,
S. (2019). Learning lightweight face detector with
knowledge distillation. 2019 International Confer-
ence on Biometrics (ICB).
John, T. A., Balasubramanian, V. N., and Jawahar, C. V.
(2021). Canonical saliency maps: Decoding deep face
models. ArXiv, abs/2105.01386.
Khorrami, P., Paine, T. L., and Huang, T. S. (2015). Do deep
neural networks learn facial action units when doing
expression recognition? In Proceedings of the 2015
IEEE International Conference on Computer Vision
Workshop (ICCVW).
Kim, M. and Smaragdis, P. (2016). Bitwise neural net-
works. ArXiv.
Kossaifi, J., Tzimiropoulos, G., Todorovic, S., and Pantic,
M. (2017). Afew-va database for valence and arousal
estimation in-the-wild. Image and Vision Computing.
Lee, N., Ajanthan, T., and Torr, P. H. S. (2019). Snip:
Single-shot network pruning based on connection sen-
sitivity. ArXiv, abs/1810.02340.
Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H.
(2017). Pruning filters for efficient convnets. In Pro-
ceedings of the International Conference on Learning
Representations (ICLR).
Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P.
(2016). Pruning filters for efficient convnets. ArXiv,
abs/1608.08710.
Lim, J. J., Salakhutdinov, R. R., and Torralba, A. (2011).
Transfer learning by borrowing examples for multi-
class object detection. In Advances in neural informa-
tion processing systems.
Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep learn-
ing face attributes in the wild. In Proceedings of In-
ternational Conference on Computer Vision (ICCV).
Long, J. L., Zhang, N., and Darrell, T. (2014). Do convnets
learn correspondence? In Advances in Neural Infor-
mation Processing Systems.
Luo, J.-H., Zhang, H., yu Zhou, H., Xie, C.-W., Wu, J.,
and Lin, W. (2018). Thinet: Pruning cnn filters for
a thinner net. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 41:2525–2538.
Martin Koestinger, Paul Wohlhart, P. M. R. and Bischof,
H. (2011). Annotated Facial Landmarks in the Wild:
A Large-scale, Real-world Database for Facial Land-
mark Localization. In Proc. First IEEE International
Workshop on Benchmarking Facial Image Analysis
Technologies.
Miyashita, D., Lee, E. H., and Murmann, B. (2016). Convo-
lutional neural networks using logarithmic data repre-
sentation. ArXiv.
Molchanov, P., Tyree, S., Karras, T., Aila, T., and
Kautz, J. (2016). Pruning convolutional neural net-
works for resource efficient transfer learning. ArXiv,
abs/1611.06440.
Oquab, M., Bottou, L., Laptev, I., and Sivic, J. (2014).
Learning and transferring mid-level image represen-
tations using convolutional neural networks. In Pro-
ceedings of the 2014 IEEE Conference on Computer
Vision and Pattern Recognition.
Parkhi, O. M., Vedaldi, A., and Zisserman, A. (2015). Deep
face recognition. In British Machine Vision Confer-
ence.
Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A.
(2016). Xnor-net: Imagenet classification using bi-
nary convolutional neural networks. In ECCV.
Razavian, A. S., Azizpour, H., Sullivan, J., and Carlsson,
S. (2014). Cnn features off-the-shelf: An astound-
ing baseline for recognition. In Proceedings of the
2014 IEEE Conference on Computer Vision and Pat-
tern Recognition Workshops.
Sharma, A. and Foroosh, H. (2020). Slim-cnn: A light-
weight cnn for face attribute prediction. 2020 15th
IEEE International Conference on Automatic Face
and Gesture Recognition (FG 2020).
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2015). Going deeper with convolutions.
2015 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).
Tibshirani, R. (1996). Regression shrinkage and selection
via the lasso. Journal of the Royal Statistical Society.
Series B (Methodological).
Tommasi, T., Orabona, F., and Caputo, B. (2010). Safety
in numbers: Learning categories from few examples
with multi model knowledge transfer. In Proceed-
ings of IEEE Computer Vision and Pattern Recogni-
tion Conference.
Wang, C. and Lan, X. (2017). Model distillation with
knowledge transfer in face classification, alignment
and verification. ArXiv.
Wu, X., He, R., Sun, Z., and Tan, T. (2018). A light cnn
for deep face representation with noisy labels. IEEE
Transactions on Information Forensics and Security.
Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014).
How transferable are features in deep neural net-
works? In Proceedings of the 27th International Con-
ference on Neural Information Processing Systems -
Volume 2.
Zamir, A. R., Sax, A., Shen, W., Guibas, L., Malik, J., and
Savarese, S. (2018). Taskonomy: Disentangling task
VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications
256