Zhang, Y., Naveen, S., Lai, L., Chandra, V. (2018). Hello
Edge: Keyword Spotting on Microcontrollers. In
arXiv 14 Feb 2018.
Gouda, S., K., Kanetkar, S., Harrison, V., Warmuth, M., K.
(2020). Speech Recognition: Key Word Spotting
through Image Recognition. In arXiv 24 Nov 2020.
McGraw, R., Prabhavalkar, R., Alvarez, R., Arenas, M. G.,
Rao, K., Rybach, D., Alsharif, O., Sak, H., Gruenstein,
A., Beaufays, F., Parada, C. (2016). Personalized
Speech Recognition on Mobile Device. In arXiv 11 Mar
2016.
Sainath, T. N., Parada, C. (2015). Convolutional Neural
Networks for Small-footprint Keyword Spotting. In
Sixteenth Annual Conference of the International
Speech Communication Association, 2015.
STMicroelectronics (2019). STEVAL-STLKT01V1 Data
brief -SensorTile development kit
Warden, P. (2018) Speech commands: A dataset for
limited-vocabulary speech recognition. In arXiv
preprint arXiv:1804.03209, 2018
Coucke, A., Chlieh, M., Gisselbrecht, T., Leroy, D.,
Poumeyrol, M., Lavril, Thibaut. (2019) Efficient
Keyword Spotting Using Dilated Convolutions and
Gating. In arXiv, 18 Feb 2019.
Muda, L., Begam, M., Elamvazuthi, I. (2010). Voice
Recognition Algorithms using Mel Frequency Cepstral
Coefficient (MFCC) and Dynamic Time Warping
(DTW) Techniques. In Journal of Computing, volume
2, issue 3, March 2010, ISSN 2151-9617
Xu, H., Yao, S., Li, Q., Ye, Z.. P. (2020). K-Means
Clustering and Related Algorithms. In IEEE 5th
International Symposium on Smart and Wireless
Systems within the Conferences on Intelligent Data
Acquisition and Advanced Computing Systems
(IDAACS-SWS)
Hasan, R., Hasan, M., Hossain, Z. (2021). How many Mel-
frequency cepstral coefficients to be utilized inspeech
recognition? A study with the Bengali language. In The
Journal of Engineering, 4 September 2021
Albadr, M.A.A., Tiun, S., Ayob, M. et al. (2021) Mel-
Frequency Cepstral Coefficient Features Based on
Standard Deviation and Principal Component Analysis
for Language Identification. (2021). In
Systems. Cognitive Computation 13, 1136–1153 16
July 2021
Mazumder, M., Chitlangia, S., Banbury, C., Kang, Y., Ciro,
J., Achorn, K., Galvez, D., Sabini, M., Mattson, P.,
Kanter, D., Diamos, G., Warden, P., Meyer, J., Reddi,
V., J. (2021). Multilingual Spoken Words Corpus. In
35th Conference on NeurIPS Track on Datasets and
Benchmarks, 2021
Cases, I., Rosenbaum, C., Riemer, M., Geiger, A., Klinger,
T., Tamkin, A., Li, O., Agarwal,S., Greene, J. D.,
Jurafsky, D., Potts, C., Karttunen, L. (2019). Recursive
Routing Networks: Learning to Compose Modules for
Language Understanding. In North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, 2019
Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J.,
Song, X., Ward, R. (2016). Deep sentence embedding
using long short-term memory networks: analysis and
application to information retrieval. In IEEE/ACM
Transactions on Audio, Speech and Language
ProcessingVolume 24Issue 4April 2016
Sak, H., Senior, A., Beaufay, F. (2014). Long Short-Term
Memory Recurrent Neural Network Architectures for
Large Scale Acoustic Modeling. In Interspeech.2014-
80
Guarneri, N. I. (2019). Trigger to Keyword Spotting
System. United States Patent Application
20210065689.
STMicroelectronics, X-Cube-AI. In X-CUBE-AI - AI
expansion pack for STM32CubeMX -
STMicroelectronics
STMicroelectronics, STM32Cube.MX. In STM32CubeMX
- STM32Cube initialization code generator -
STMicroelectronics.
HUCAPP 2022 - 6th International Conference on Human Computer Interaction Theory and Applications
254