REFERENCES
Alharbi, M. and Laramee, R. S. (2019). SoS TextVis:
An extended survey of surveys on text visualization.
Computers, 8(1).
Amar, R. A. and Stasko, J. T. (2005). Knowledge pre-
cepts for design and evaluation of information visu-
alizations. IEEE Transactions on Visualization and
Computer Graphics, 11(4):432–442.
Bertin, J. (2011). Semiology of Graphics: Diagrams, Net-
works, Maps. ESRI Press. Translated by W. J. Berg.
Bouchama, S. (2021). Task-based evaluation of sentiment
visualization techniques. Master’s thesis, Linnaeus
University.
Boumaiza, A. (2015). A survey on sentiment analysis and
visualization. Journal of Emerging Technologies in
Web Intelligence, 7(1):35–43.
Carpendale, S. (2003). Considering visual variables as a
basis for information visualisation. Technical Report
2001-693-16, University of Calgary.
Carpendale, S. (2008). Evaluating information visualiza-
tions. In Information Visualization: Human-Centered
Issues and Perspectives, volume 4950 of LNCS, pages
19–45. Springer.
Chen, S., Lin, L., and Yuan, X. (2017). Social media visual
analytics. Computer Graphics Forum, 36(3):563–587.
Diakopoulos, N., Naaman, M., and Kivran-Swaine, F.
(2010). Diamonds in the rough: Social media visual
analytics for journalistic inquiry. In Proceedings of
the IEEE Symposium on Visual Analytics Science and
Technology, VAST ’10, pages 115–122. IEEE.
Ebert, A., Gershon, N. D., and van der Veer, G. C. (2012).
Human-computer interaction. KI — K
¨
unstliche Intel-
ligenz, 26(2):121–126.
Elmqvist, N. and Yi, J. S. (2015). Patterns for visualization
evaluation. Information Visualization, 14(3):250–269.
Fekete, J.-D. and Freire, J. (2020). Exploring reproducibil-
ity in visualization. IEEE Computer Graphics and Ap-
plications, 40(5):108–119.
Fekete, J.-D., van Wijk, J. J., Stasko, J. T., and North,
C. (2008). The value of information visualization.
In Information Visualization: Human-Centered Issues
and Perspectives, volume 4950 of LNCS, pages 1–18.
Springer.
Frøkjær, E., Hertzum, M., and Hornbæk, K. (2000). Mea-
suring usability: Are effectiveness, efficiency, and sat-
isfaction really correlated? In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, CHI ’00, pages 345–352. ACM.
G
¨
org, C., Pohl, M., Qeli, E., and Xu, K. (2007). Visual rep-
resentations. In Human-Centered Visualization Envi-
ronments: GI-Dagstuhl Research Seminar, Dagstuhl
Castle, Germany, March 5–8, 2006, Revised Lectures,
volume 4417 of LNCS, pages 163–230. Springer.
Isenberg, T., Isenberg, P., Chen, J., Sedlmair, M., and
M
¨
oller, T. (2013). A systematic review on the prac-
tice of evaluating visualization. IEEE Transactions on
Visualization and Computer Graphics, 19(12):2818–
2827.
Kucher, K. and Kerren, A. (2015). Text visualization tech-
niques: Taxonomy, visual survey, and community in-
sights. In Proceedings of the IEEE Pacific Visual-
ization Symposium, PacificVis ’15, pages 117–121.
IEEE.
Kucher, K., Paradis, C., and Kerren, A. (2018). The state of
the art in sentiment visualization. Computer Graphics
Forum, 37(1):71–96.
Lam, H., Bertini, E., Isenberg, P., Plaisant, C., and Carpen-
dale, S. (2012). Empirical studies in information vi-
sualization: Seven scenarios. IEEE Transactions on
Visualization and Computer Graphics, 18(9):1520–
1536.
Mohammad, S. M. (2016). Sentiment analysis: Detecting
valence, emotions, and other affectual states from text.
In Meiselman, H. L., editor, Emotion Measurement,
pages 201–237. Woodhead Publishing.
Mohammad, S. M., Bravo-Marquez, F., Salameh, M., and
Kiritchenko, S. (2018a). SemEval-2018 Task 1: Af-
fect in tweets. In Proceedings of the International
Workshop on Semantic Evaluation, SemEval-2018.
Mohammad, S. M., Bravo-Marquez, F., Salameh,
M., and Kiritchenko, S. (2018b). SemEval-
2018 Task 1: Affect in tweets (AIT-2018).
https://competitions.codalab.org/competitions/17751.
Last accessed: November 8, 2021.
Munezero, M., Montero, C. S., Sutinen, E., and Pajunen,
J. (2014). Are they different? Affect, feeling, emo-
tion, sentiment, and opinion detection in text. IEEE
Transactions on Affective Computing, 5(2):101–111.
Munzner, T. (2015). Visualization Analysis & Design. CRC
Press/Taylor & Francis Group.
Nibras, G. (2019). (Un)locked cell phone
ratings and reviews on Amazon.
https://www.kaggle.com/grikomsn/amazon-cell-
phones-reviews/version/1. Last accessed: November
8, 2021.
Purchase, H. C. (2012). Experimental Human-Computer
Interaction: A Practical Guide with Visual Examples.
Cambridge University Press.
Saket, B., Endert, A., and Demiralp, C¸ . (2019). Task-
based effectiveness of basic visualizations. IEEE
Transactions on Visualization and Computer Graph-
ics, 25(7):2505–2512.
Shamim, A., Balakrishnan, V., and Tahir, M. (2015). Evalu-
ation of opinion visualization techniques. Information
Visualization, 14(4):339–358.
Zhao, J., Gou, L., Wang, F., and Zhou, M. (2014). PEARL:
An interactive visual analytic tool for understanding
personal emotion style derived from social media. In
Proceedings of the IEEE Conference on Visual Ana-
lytics Science and Technology, VAST ’14, pages 203–
212. IEEE.
IVAPP 2022 - 13th International Conference on Information Visualization Theory and Applications
194