REFERENCES
Aich, S. and Stavness, I. (2018). Improving object counting
with heatmap regulation. CoRR, abs/1803.05494.
Altman, S. A., Randers, L., and Rao, G. (1993). Com-
parison of trypan blue dye exclusion and fluorometric
assays for mammalian cell viability determinations.
Biotechnology Progress, 9(6):671–674.
Amato, G., Bolettieri, P., Moroni, D., Carrara, F., Ciampi,
L., Pieri, G., Gennaro, C., Leone, G. R., and Vairo, C.
(2018). A wireless smart camera network for parking
monitoring. In 2018 IEEE Globecom Workshops (GC
Wkshps), pages 1–6. IEEE.
Amato, G., Ciampi, L., Falchi, F., and Gennaro, C. (2019).
Counting vehicles with deep learning in onboard UAV
imagery. In 2019 IEEE Symposium on Computers and
Communications (ISCC), pages 1–6. IEEE.
Arteta, C., Lempitsky, V., Noble, J. A., and Zisserman,
A. (2016a). Detecting overlapping instances in mi-
croscopy images using extremal region trees. Medical
Image Analysis, 27:3–16.
Arteta, C., Lempitsky, V. S., and Zisserman, A. (2016b).
Counting in the wild. In Computer Vision - ECCV
2016, volume 9911, pages 483–498. Springer.
Boominathan, L., Kruthiventi, S. S. S., and Babu, R. V.
(2016). Crowdnet: A deep convolutional network for
dense crowd counting. In Proceedings of the 24th
ACM international conference on Multimedia, pages
640–644. ACM.
Ciampi, L., Amato, G., Falchi, F., Gennaro, C., and Ra-
bitti, F. (2018). Counting vehicles with cameras.
In Bergamaschi, S., Noia, T. D., and Maurino, A.,
editors, Proceedings of the 26th Italian Symposium
on Advanced Database Systems, Castellaneta Marina
(Taranto), Italy, June 24-27, 2018, volume 2161 of
CEUR Workshop Proceedings. CEUR-WS.org.
Ciampi, L., Gennaro, C., Carrara, F., Falchi, F., Vairo, C.,
and Amato, G. (2021a). Multi-camera vehicle count-
ing using edge-ai. CoRR, abs/2106.02842.
Ciampi, L., Santiago, C., Costeira, J., Gennaro, C., and Am-
ato, G. (2021b). Domain adaptation for traffic den-
sity estimation. In Proceedings of the 16th Interna-
tional Joint Conference on Computer Vision, Imag-
ing and Computer Graphics Theory and Applications,
pages 185–195. SCITEPRESS - Science and Technol-
ogy Publications.
Ciampi, L., Santiago, C., Costeira, J. P., Gennaro, C., and
Amato, G. (2020). Unsupervised vehicle counting
via multiple camera domain adaptation. In Saffiotti,
A., Serafini, L., and Lukowicz, P., editors, Proceed-
ings of the First International Workshop on New Foun-
dations for Human-Centered AI (NeHuAI) co-located
with 24th European Conference on Artificial Intelli-
gence (ECAI 2020), Santiago de Compostella, Spain,
September 4, 2020, volume 2659 of CEUR Workshop
Proceedings, pages 82–85. CEUR-WS.org.
Cohen, J. P., Boucher, G., Glastonbury, C. A., Lo, H. Z.,
and Bengio, Y. (2017). Count-ception: Counting by
fully convolutional redundant counting. In 2017 IEEE
International Conference on Computer Vision Work-
shops (ICCVW), pages 18–26. IEEE.
Falk, T., Mai, D., Bensch, R.,
¨
Ozg
¨
un C¸ ic¸ek, Abdulkadir,
A., Marrakchi, Y., B
¨
ohm, A., Deubner, J., J
¨
ackel, Z.,
Seiwald, K., Dovzhenko, A., Tietz, O., Bosco, C. D.,
Walsh, S., Saltukoglu, D., Tay, T. L., Prinz, M., Palme,
K., Simons, M., Diester, I., Brox, T., and Ronneberger,
O. (2018). U-net: deep learning for cell counting, de-
tection, and morphometry. Nat. Methods, 16(1):67–
70.
Fawcett, J. W., Oohashi, T., and Pizzorusso, T. (2019). The
roles of perineuronal nets and the perinodal extracel-
lular matrix in neuronal function. Nat. Rev. Neurosci.,
20(8):451–465.
Guerrero-G
´
omez-Olmedo, R., Torre-Jim
´
enez, B., L
´
opez-
Sastre, R., Maldonado-Basc
´
on, S., and O
˜
noro-Rubio,
D. (2015). Extremely overlapping vehicle counting. In
Pattern Recognition and Image Analysis, pages 423–
431. Springer International Publishing.
Guo, Y., Krupa, O., Stein, J., Wu, G., and Krishnamurthy,
A. (2021). SAU-net: A unified network for cell count-
ing in 2d and 3d microscopy images. IEEE/ACM
Trans. Comput. Biol. Bioinform., pages 1–1.
He, K., Gkioxari, G., Doll
´
ar, P., and Girshick, R. (2017).
Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969.
He, S., Minn, K. T., Solnica-Krezel, L., Anastasio, M. A.,
and Li, H. (2021). Deeply-supervised density regres-
sion for automatic cell counting in microscopy im-
ages. Medical Image Analysis, 68:101892.
Jiang, N. and Yu, F. (2020). A cell counting framework
based on random forest and density map. Appl. Sci.,
10(23):8346.
Johnston, G. (2010). Automated handheld instrument im-
proves counting precision across multiple cell lines.
BioTechniques, 48(4):325–327.
Kainz, P., Urschler, M., Schulter, S., Wohlhart, P., and Lep-
etit, V. (2015). You should use regression to detect
cells. In Lecture Notes in Computer Science, pages
276–283. Springer International Publishing.
Kotoura, Y., Yamamuro, T., Shikata, J., Kakutani, Y., Kit-
sugi, T., and Tanaka, H. (1985). A method for toxi-
cological evaluation of biomaterials based on colony
formation of v79 cells. Archives of Orthopaedic and
Traumatic Surgery, 104(1):15–19.
Laradji, I. H., Rostamzadeh, N., Pinheiro, P. O., Vazquez,
D., and Schmidt, M. (2018). Where are the blobs:
Counting by localization with point supervision. In
Computer Vision – ECCV 2018, volume 11206, pages
560–576. Springer International Publishing.
Lempitsky, V. S. and Zisserman, A. (2010). Learning to
count objects in images. In Advances in Neural Infor-
mation Processing Systems 23: 24th Annual Confer-
ence on Neural Information Processing Systems 2010,
pages 1324–1332. Curran Associates, Inc.
Li, Y., Zhang, X., and Chen, D. (2018). CSRNet: Dilated
convolutional neural networks for understanding the
highly congested scenes. In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 1091–1100. IEEE.
Lu, E., Xie, W., and Zisserman, A. (2019). Class-agnostic
VISAPP 2022 - 17th International Conference on Computer Vision Theory and Applications
896