train more complex networks faster. Thus, we cannot
make a comparison between our results and those
already published, but we can conclude that, despite
our high FP values in this preliminary study, there is
potential to improve and achieve results similar to
those of the masses.
In conclusion, taking into account the preliminary
results presented, we conclude that detection and
location of MCs in DBT can be automatically
achieved using Faster R-CNN and visualization of
these results can benefit from another approach such
as 3D VR.
ACKNOWLEDGEMENTS
This work was supported by Universidade de Lisboa
(PhD grant) and Fundação para a Ciência e
Tecnologia – Portugal (Grant No.
SFRH/BD/135733/2018 and FCT-IBEB Strategic
Project UIDB/00645/2020).
REFERENCES
Badano, A., Graff, C. G., Badal, A., Sharma, D., Zeng, R.,
Samuelson, F. W., Myers, K. J. (2018). Evaluation of
Digital Breast Tomosynthesis as Replacement of Full-
Field Digital Mammography Using an In Silico
Imaging Trial. JAMA Network Open, 1(7), e185474-
e185474. doi: 10.1001/jamanetworkopen.2018.5474
Bernardi, D., Macaskill, P., Pellegrini, M., Valentini, M.,
Fantò, C., Ostillio, L., Houssami, N. (2016). Breast
cancer screening with tomosynthesis (3D
mammography) with acquired or synthetic 2D
mammography compared with 2D mammography
alone (STORM-2): a population-based prospective
study. The Lancet Oncology, 17(8), 1105-1113. doi:
https://doi.org/10.1016/S1470-2045(16)30101-2
Buda, M., Saha, A., Walsh, R., Ghate, S., Li, N., Święcicki,
A., Mazurowski, M. A. (2020). Detection of masses and
architectural distortions in digital breast tomosynthesis:
a publicly available dataset of 5,060 patients and a deep
learning model. arXiv:2011.07995. Retrieved from
https://ui.adsabs.harvard.edu/abs/2020arXiv20110799
5B
Bunch, P., Hamilton, J., Sanderson, G., & Simmons, A.
(1977). A Free Response Approach To The
Measurement And Characterization Of Radiographic
Observer Performance (Vol. 0127): SPIE.
Caumo, F., Zorzi, M., Brunelli, S., Romanucci, G., Rella,
R., Cugola, L., Houssami, N. (2018). Digital Breast
Tomosynthesis with Synthesized Two-Dimensional
Images versus Full-Field Digital Mammography for
Population Screening: Outcomes from the Verona
Screening Program. Radiology, 287(1), 37-46. doi:
10.1148/radiol.2017170745
Fan, M., Li, Y., Zheng, S., Peng, W., Tang, W., & Li, L.
(2019). Computer-aided detection of mass in digital
breast tomosynthesis using a faster region-based
convolutional neural network. Methods, 166, 103-111.
doi: https://doi.org/10.1016/j.ymeth.2019.02.010
Fan, M., Zheng, H., Zheng, S., You, C., Gu, Y., Gao, X., Li,
L. (2020). Mass Detection and Segmentation in Digital
Breast Tomosynthesis Using 3D-Mask Region-Based
Convolutional Neural Network: A Comparative
Analysis. [Original Research]. Frontiers in Molecular
Biosciences, 7(340). doi: 10.3389/fmolb.2020.599333
Fenton, J. J., Taplin, S. H., Carney, P. A., Abraham, L.,
Sickles, E. A., D'Orsi, C., Elmore, J. G. (2007).
Influence of Computer-Aided Detection on
Performance of Screening Mammography. New
England Journal of Medicine, 356(14), 1399-1409. doi:
10.1056/NEJMoa066099
Food and Drug Administration (FDA) U.S. . (2013).
Premarket Approval application supplement for the
Selenia Dimensions 3D System Retrieved May, 2021
Fotin, S., Yin, Y., Haldankar, H., Hoffmeister, J., &
Periaswamy, S. (2016). Detection of soft tissue
densities from digital breast tomosynthesis:
comparison of conventional and deep learning
approaches (Vol. 9785): SPIE.
Freer, P. E., Riegert, J., Eisenmenger, L., Ose, D., Winkler,
N., Stein, M. A., Hess, R. (2017). Clinical
implementation of synthesized mammography with
digital breast tomosynthesis in a routine clinical
practice. Breast Cancer Research and Treatment,
166(2), 501-509. doi: 10.1007/s10549-017-4431-1
Gilbert, F. J., Tucker, L., Gillan, M. G. C., Willsher, P.,
Cooke, J., Duncan, K. A., Duffy, S. W. (2015). Accuracy
of Digital Breast Tomosynthesis for Depicting Breast
Cancer Subgroups in a UK Retrospective Reading Study
(TOMMY Trial). Radiology, 277(3), 697-706. doi:
10.1148/radiol.20 15142566
Girshick, R. (2015). Fast R-CNN. Paper presented at the
Proceedings of the IEEE international conference on
computer vision.
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014).
Rich feature hierarchies for accurate object detection
and semantic segmentation. Paper presented at the
Proceedings of the IEEE conference on computer vision
and pattern recognition.
Good, W. F., Abrams, G. S., Catullo, V. J., Chough, D. M.,
Ganott, M. A., Hakim, C. M., & Gur, D. (2008). Digital
breast tomosynthesis: a pilot observer study. AJR Am J
Roentgenol, 190(4), 865-869. doi: 10.2214/ajr.07.2841
Gur, D., Abrams, G. S., Chough, D. M., Ganott, M. A.,
Hakim, C. M., Perrin, R. L., Bandos, A. I. (2009).
Digital breast tomosynthesis: observer performance
study. AJR Am J Roentgenol, 193(2), 586-591. doi:
10.2214/ajr.08.2031
Hofvind, S., Hovda, T., Holen, Å. S., Lee, C. I., Albertsen,
J., Bjørndal, H., Skaane, P. (2018). Digital Breast
Tomosynthesis and Synthetic 2D Mammography
versus Digital Mammography: Evaluation in a
Population-based Screening Program. Radiology,
287(3), 787-794. doi: 10.1148/radiol.2018171361