adverse impacts. Science of the Total Environment,
752.
Cowger, W., Gray, A., Christiansen, S., DeFrond, H.,
Deshpande, A., Hemabessiere, L., Lee, E., Mill, L.,
Munno, K., Ossmann, B., Pittroff, M., Rochman, C.,
Sarau, G., Tarby, S., and Primpke, S. (2020). Critical
review of processing and classification techniques for
images and spectra in microplastic research. Applied
Spectroscopy, 74(9):989–1010.
Cowger, W., Steinmetz, Z., Gray, A., Munno, K., Lynch,
J., Hapich, H., Primpke, S., De Frond, H., Rochman,
C., and Herodotou, O. (2021). Microplastic spec-
tral classification needs an open source community:
Open specy to the rescue! Analytical Chemistry,
93(21):7543–7548.
Cui, Z., Chen, W., and Chen, Y. (2016). Multi-scale convo-
lutional neural networks for time series classification.
Franklin, R. and Muthukumar, B. (2022). Arrhythmia and
disease classification based on deep learning tech-
niques. Intelligent Automation and Soft Computing,
31(2):835–851.
Hanvey, J., Lewis, P., Lavers, J., Crosbie, N., Pozo, K., and
Clarke, B. (2017). A review of analytical techniques
for quantifying microplastics in sediments. Analytical
Methods, 9(9):1369–1383.
Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L.,
and Muller, P.-A. (2019). Deep learning for time series
classification: a review. Data Mining and Knowledge
Discovery, 33(4):917–963.
Katare, Y., Singh, P., Sankhla, M., Singhal, M., Jadhav,
E., Parihar, K., Nikalje, B., Trpathi, A., and Bhard-
waj, L. (2022). Microplastics in aquatic environ-
ments: Sources, ecotoxicity, detection and remedi-
ation. Biointerface Research in Applied Chemistry,
12(3):3407–3428.
Kaul, A. (2021). Worldwide plastics produc-
tion falls in 2020 due to covid-19: Report.
https://www.republicworld.com/world-news/global-
event-news/worldwide-plastics-production-falls-
in-2020-due-to-covid-19-report.html. Accessed:
2021-11-23.
Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. CoRR, abs/1412.6980.
LeCun, Y., Haffner, P., Bottou, L., and Bengio, Y. (1999).
Object recognition with gradient-based learning. Lec-
ture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 1681:319–345.
Lorenzo-Navarro, J., Castrillon-Santana, M., Santesarti, E.,
De Marsico, M., Martinez, I., Raymond, E., Gomez,
M., and Herrera, A. (2020). Smacc: A system for
microplastics automatic counting and classification.
IEEE Access, 8:25249–25261.
Mukhanov, V., Litvinyuk, D., Sakhon, E., Bagaev, A.,
Veerasingam, S., and Venkatachalapathy, R. (2019).
A new method for analyzing microplastic particle size
distribution in marine environmental samples. Eco-
logica Montenegrina, 23:77–86.
Ng, W., Minasny, B., and McBratney, A. (2020). Convolu-
tional neural network for soil microplastic contamina-
tion screening using infrared spectroscopy. Science of
the Total Environment, 702.
Rochman, C., Hoh, E., Kurobe, T., and Teh, S. (2013).
Ingested plastic transfers hazardous chemicals to fish
and induces hepatic stress. Scientific Reports, 3.
Shelhamer, E., Long, J., and Darrell, T. (2017). Fully con-
volutional networks for semantic segmentation. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 39(4):640–651.
Sikdar, S., Liu, D., and Kundu, A. (2022). Acoustic emis-
sion data based deep learning approach for classifica-
tion and detection of damage-sources in a composite
panel. Composites Part B: Engineering, 228.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A., Kaiser, L., and Polosukhin, I. (2017).
Attention is all you need. volume 2017-December,
pages 5999–6009.
Wang, Z., Yan, W., and Oates, T. (2017). Time series clas-
sification from scratch with deep neural networks: A
strong baseline. volume 2017-May, pages 1578–1585.
Xu, L., Han, L., Li, J., Zhang, H., Jones, K., and Xu, E.
(2022). Missing relationship between meso- and mi-
croplastics in adjacent soils and sediments. Journal of
Hazardous Materials, 424.
Spectral Classification of Microplastics using Neural Networks: Pilot Feasibility Study
289