ACKNOWLEDGEMENTS
This study was financed in part by the Coordenac¸
˜
ao
de Aperfeic¸oamento de Pessoal de N
´
ıvel Superior
- Brasil (CAPES) and by Fundac¸
˜
ao de Amparo
`
a
Pesquisa (FAPESP) [grant numbers #2018/17881-3,
#2018/25755-8].
REFERENCES
Clavien, G., Alberti, M., Pondenkandath, V., Ingold, R., and
Liwicki, M. (2019). Dnnviz: Training evolution visu-
alization for deep neural network. In 2019 6th Swiss
Conference on Data Science (SDS), pages 19–24.
Dubey, A., Chatterjee, M., and Ahuja, N. (2018). Coreset-
based neural network compression.
Garcia, R., Falc
˜
ao, A. X., Telea, A. C., da Silva, B. C.,
Tørresen, J., and Dihl Comba, J. L. (2019). A method-
ology for neural network architectural tuning using ac-
tivation occurrence maps. In 2019 International Joint
Conference on Neural Networks (IJCNN), pages 1–10.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. MIT Press.
He, Y., Liu, P., Wang, Z., Hu, Z., and Yang, Y. (2019). Filter
pruning via geometric median for deep convolutional
neural networks acceleration.
He, Y., Zhang, X., and Sun, J. (2017). Channel pruning for
accelerating very deep neural networks.
Hofmann, T. (1999). Probabilistic latent semantic index-
ing. In Proceedings of the 22Nd Annual International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR ’99, pages 50–
57, New York, NY, USA. ACM.
Hohman, F., Park, H., Robinson, C., and Polo Chau, D. H.
(2020). Summit: Scaling deep learning interpretabil-
ity by visualizing activation and attribution summa-
rizations. IEEE Transactions on Visualization and
Computer Graphics, 26(1):1096–1106.
Kim, B., Rudin, C., and Shah, J. (2014). The bayesian case
model: A generative approach for case-based reason-
ing and prototype classification. In Proceedings of the
27th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’14, pages 1952–
1960, Cambridge, MA, USA. MIT Press.
LeCun, Y. and Cortes, C. (2010). MNIST handwritten digit
database.
Li, G., Wang, J., Shen, H.-W., Chen, K., Shan, G., and Lu,
Z. (2021). Cnnpruner: Pruning convolutional neural
networks with visual analytics. IEEE Transactions on
Visualization and Computer Graphics, 27(2):1364–
1373.
Liu, S., Maljovec, D., Wang, B., Bremer, P., and Pascucci,
V. (2017a). Visualizing high-dimensional data: Ad-
vances in the past decade. IEEE Trans. Vis. Comput.
Graph., 23(3):1249–1268.
Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang,
C. (2017b). Learning efficient convolutional networks
through network slimming.
Luo, J.-H., Wu, J., and Lin, W. (2017). Thinet: A filter level
pruning method for deep neural network compression.
Marcilio-Jr, W. E., E. D. M. (2020). Sadire: a context-
preserving sampling technique for dimensionality re-
duction visualizations. J Vis, 23:999–1013.
Marcilio-Jr, W. E., Eler, D. M., Garcia, R. E., Correia, R.
C. M., and Silva, L. F. (2020). A hybrid visualiza-
tion approach to perform analysis of feature spaces.
In Latifi, S., editor, 17th International Conference
on Information Technology–New Generations (ITNG
2020), pages 241–247, Cham. Springer International
Publishing.
Marc
´
ılio-Jr, W. E., Eler, D. M., Paulovich, F. V., and Mar-
tins, R. M. (2021a). Humap: Hierarchical uniform
manifold approximation and projection.
Marc
´
ılio-Jr, W. E., Eler, D. M., Paulovich, F. V., Rodrigues-
Jr, J. F., and Artero, A. O. (2021b). Explorertree: A fo-
cus+context exploration approach for 2d embeddings.
Big Data Research, 25:100239.
Pezzotti, N., H
¨
ollt, T., Van Gemert, J., Lelieveldt, B. P. F.,
Eisemann, E., and Vilanova, A. (2018). Deepeyes:
Progressive visual analytics for designing deep neu-
ral networks. IEEE Transactions on Visualization and
Computer Graphics, 24(1):98–108.
Rauber, P. E., Fadel, S. G., Falc
˜
ao, A. X., and Telea, A. C.
(2017). Visualizing the hidden activity of artificial
neural networks. IEEE Transactions on Visualization
and Computer Graphics, 23(1):101–110.
Reingold, E. M. and Tilford, J. S. (1981). Tidier drawings
of trees. IEEE Transactions on Software Engineering,
SE-7(2):223–228.
Strobelt, H., Gehrmann, S., Pfister, H., and Rush, A. M.
(2018). Lstmvis: A tool for visual analysis of hidden
state dynamics in recurrent neural networks. IEEE
Transactions on Visualization and Computer Graph-
ics, 24(1):667–676.
Ware, C. (2012). Information Visualization: Perception for
Design. Morgan Kaufmann Series in Interactive Tech-
nologies. Morgan Kaufmann, Amsterdam, 3 edition.
Yu, R., Li, A., Chen, C.-F., Lai, J.-H., Morariu, V. I., Han,
X., Gao, M., Lin, C.-Y., and Davis, L. S. (2018).
Nisp: Pruning networks using neuron importance
score propagation.
Zeiler, M. D. and Fergus, R. (2014). Visualizing and under-
standing convolutional networks. In Fleet, D., Pajdla,
T., Schiele, B., and Tuytelaars, T., editors, Computer
Vision – ECCV 2014, pages 818–833, Cham. Springer
International Publishing.
Semi-automatic CNN Architectural Pruning using the Bayesian Case Model and Dimensionality Reduction Visualization
209