machine learning approaches enable a fine resolution
of subtyping DM towards precision medicine.
REFERENCES
Bej, S., Sarkar, J., Biswas, S., Mitra, P., Chakrabarti, P., &
Wolkenhauer, O. (2020). Identification and
epidemiological characterization of non-obese type 2
diabetic sub-populations in the nfhs-4 study using an
unsupervised machine learning approach. MedRxiv.
https://doi.org/10.1101/2020.09.21.20198598
Benbelkacem, S. (2019). Random forests for diabetes
diagnosis. 2019 International Conference on Computer
and Information Sciences (ICCIS). https://doi.org/
10.1109/ICCISci.2019.8716405
Bertachi, A., Biagi, L., Contreras, I., Luo, N., & Vehí, J.
(2018). Prediction of blood glucose levels and
nocturnal hypoglycemia using physiological models
and artificial neural networks. CEUR-WS, 2148(14),
85-90. http://ceur-ws.org/Vol-2148/paper14.pdf
Bonora, E., & Tuomilehto, J. (2011). The pros and cons of
diagnosing diabetes with a1c. Diabetes Care,
34(Supplement_2), S184-S190. https://doi.org/
10.2337/dc11-s216
Dubosson, F., Ranvier, J.-E., Bromuri, S., Calbimonte, J.-
P., Ruiz, J., & Schumacher, M. (2018). The open
d1namo dataset: A multi-modal dataset for research on
non-invasive type 1 diabetes management. Informatics
in Medicine Unlocked, 13, 92-100. https://doi.org/
10.1016/j.imu.2018.09.003
Fiorini, S., Martini, C., Malpassi, D., Cordera, R., Maggi,
D., Verri, A., & Barla, A. (2017). Data-driven strategies
for robust forecast of continuous glucose monitoring
time-series. 2017 39th Annual International Conference
of the IEEE Engineering in Medicine and Biology
Society (EMBC), 1680-1683. https://doi.org/10.1109/
EMBC.2017.8037164
Gupta, P., Sivalingam, U., Pölst, S., & Navab, N. (2015).
Identifying patients with diabetes using discriminative
restricted boltzmann machines. Techical University of
Munich (TUM), Germany. http://doi.org/10.13140/
RG.2.2.10166.09283
iHMP Research Network Consortium. (2014). The
integrative human microbiome project: Dynamic
analysis of microbiome-host omics profiles during
periods of human health and disease. Cell Host &
Microbe, 16(3), 276-289. https://doi.org/10.1016/
j.chom.2014.08.014
Kardelen, F., Akcurin, G., Ertug, H., Akcurin, S., & Bircan,
I. (2006). Heart rate variability and circadian variations
in type 1 diabetes mellitus. Pediatric Diabetes, 7(1), 45-
50. https://doi.org/10.1111/j.1399-543X.2006.00141.x
Kharroubi, A. T., & Darwish, H. M. (2015). Diabetes
mellitus: The epidemic of the century. World Journal of
Diabetes, 6(6), 850-867. https://doi.org/10.4239/
wjd.v6.i6.850
Lobo, B., Farhy, L., Shafiei, M., & Kovatchev, B. (2021).
A data-driven approach to classifying daily continuous
glucose monitoring (CGM) time series. IEEE
Transactions on Biomedical Engineering, 1. https://
doi.org/10.1109/TBME.2021.3103127
McInnes, L., Healy, J., & Melville, J. (2018). Umap:
Uniform manifold approximation and projection for
dimension reduction. ArXiv Preprint. https://arxiv.org/
abs/1802.03426
P.t., A. S., Joseph, P. K., & Jacob, J. (2011). Automated
diagnosis of diabetes using heart rate variability signals.
Journal of Medical Systems, 36(3), 1935-1941. https://
doi.org/10.1007/s10916-011-9653-x
Rajendra acharya, U., Faust, O., Adib kadri, N., Suri, J. S.,
& Yu, W. (2013). Automated identification of normal
and diabetes heart rate signals using nonlinear
measures. Computers in Biology and Medicine, 43(10),
1523-1529. https://doi.org/10.1016/
j.compbiomed.2013.05.024
Rajendra acharya, U., Vidya, K. S., Ghista, D. N., Lim, W.
J. E., Molinari, F., & Sankaranarayanan, M. (2015).
Computer-aided diagnosis of diabetic subjects by heart
rate variability signals using discrete wavelet transform
method. Knowledge-Based Systems, 81, 56-64. https://
doi.org/10.1016/j.knosys.2015.02.005
Samant, P., & Agarwal, R. (2018). Machine learning
techniques for medical diagnosis of diabetes using iris
images. Computer Methods and Programs in
Biomedicine, 157, 121-128. https://doi.org/10.1016/
j.cmpb.2018.01.004
Snyder Lab. (n.d.). iPOP Project Data Portal. Stanford
University. Retrieved September 4, 2021, from http://
hmp2-data.stanford.edu/
Swapna, G., Vinayakumar, R., & Soman, K.p. (2018).
Diabetes detection using deep learning algorithms. ICT
Express, 4(4), 243-246. https://doi.org/10.1016/
j.icte.2018.10.005
Taylor, S. J., & Letham, B. (2017). Forecasting at scale.
PeerJ Preprints. https://doi.org/10.7287/
peerj.preprints.3190v2