rying out the study. This research has been sup-
ported by the project DSAIPA/AI/0094/2020 from the
Fundac¸
˜
ao para a Ci
ˆ
encia e Tecnologia AI 4 COVID-
19 Program.
REFERENCES
Abashev, A., Grigoryev, R., Grigorian, K., and Boyko,
V. (2017). Programming Tools for Messenger-Based
Chatbot System Organization: Implication for Outpa-
tient and Translational Medicines. BioNanoScience,
7(2):403–407.
Abd-Alrazaq, A. A., Alajlani, M., Ali, N., Denecke, K.,
Bewick, B. M., and Househ, M. (2021). Perceptions
and Opinions of Patients About Mental Health Chat-
bots: Scoping Review. Journal of Medical Internet
Research, 23(1):e17828.
Bian, Y., Xiang, Y., Tong, B., Feng, B., and Weng, X.
(2020). Artificial Intelligence–Assisted System in
Postoperative Follow-up of Orthopedic Patients: Ex-
ploratory Quantitative and Qualitative Study. Journal
of Medical Internet Research, 22(5):e16896.
Bickmore, T. and Cassell, J. (2001). Relational Agents:
A Model and Implementation of Building User Trust.
In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 396–403, Seattle,
WA, USA.
Bickmore, T. W., Utami, D., Matsuyama, R., and Paasche-
Orlow, M. K. (2016). Improving Access to Online
Health Information With Conversational Agents: A
Randomized Controlled Experiment. Journal of Med-
ical Internet Research, 18(1):e1.
B
´
erub
´
e, C., Schachner, T., Keller, R., Fleisch, E., V Wan-
genheim, F., Barata, F., and Kowatsch, T. (2021).
Voice-Based Conversational Agents for the Preven-
tion and Management of Chronic and Mental Health
Conditions: Systematic Literature Review. Journal of
Medical Internet Research, 23(3):e25933.
Casas, J., Mugellini, E., and Khaled, O. A. (2018). Food
Diary Coaching Chatbot. In Proceedings of the 2018
ACM International Joint Conference and 2018 In-
ternational Symposium on Pervasive and Ubiquitous
Computing and Wearable Computers, pages 1676–
1680, Singapore Singapore. ACM.
Chaix, B., Bibault, J.-E., Pienkowski, A., Delamon, G.,
Guillemass
´
e, A., Nectoux, P., and Brouard, B. (2019).
When Chatbots Meet Patients: One-Year Prospective
Study of Conversations Between Patients With Breast
Cancer and a Chatbot. JMIR Cancer, 5(1):e12856.
Colby, K. M., Weber, S., and Hilf, F. D. (1971). Artificial
Paranoia. Artificial Intelligence, 2(1):1–25.
Crawford, T. C., Magruder, J. T., Grimm, J. C., Suarez-
Pierre, A., Sciortino, C. M., Mandal, K., Zehr, K. J.,
Conte, J. V., Higgins, R. S., Cameron, D. E., and
Whitman, G. J. (2017). Complications After Cardiac
Operations: All Are Not Created Equal. The Annals
of Thoracic Surgery, 103(1):32–40.
de Pennington, N., Mole, G., Lim, E., Milne-Ives, M., Nor-
mando, E., Xue, K., and Meinert, E. (2021). Safety
and Acceptability of a Natural Language Artificial In-
telligence Assistant to Deliver Clinical Follow-up to
Cataract Surgery Patients: Proposal. JMIR Research
Protocols, 10(7):e27227.
Denecke, K., Hochreutener, S., P
¨
opel, A., and May, R.
(2018). Self-Anamnesis with a Conversational User
Interface: Concept and Usability Study. Methods of
Information in Medicine, 57(05/06):243–252.
Echeazarra, L., Pereira, J., and Saracho, R. (2021). Ten-
sioBot: a Chatbot Assistant for Self-Managed in-
House Blood Pressure Checking. Journal of Medical
Systems, 45(4):54.
Efthymiou, C. A. and O’Regan, D. J. (2011). Postdischarge
complications: what exactly happens when the patient
goes home? Interactive CardioVascular and Thoracic
Surgery, 12(2):130–134.
Epley, N., Waytz, A., and Cacioppo, J. T. (2007). On seeing
human: a three-factor theory of anthropomorphism.
Psychological review, 114(4):864–886.
Fitzpatrick, K. K., Darcy, A., and Vierhile, M. (2017). De-
livering Cognitive Behavior Therapy to Young Adults
With Symptoms of Depression and Anxiety Using a
Fully Automated Conversational Agent (Woebot): A
Randomized Controlled Trial. JMIR Mental Health,
4(2):e19.
Griol, D. and Callejas, Z. (2016). Mobile Conversational
Agents for Context-Aware Care Applications. Cogni-
tive Computation, 8(2):336–356.
Guhl, E., Althouse, A. D., Pusateri, A. M., Kimani, E.,
Paasche-Orlow, M. K., Bickmore, T. W., and Mag-
nani, J. W. (2020). The Atrial Fibrillation Health Lit-
eracy Information Technology Trial: Pilot Trial of a
Mobile Health App for Atrial Fibrillation. JMIR Car-
dio, 4(1):e17162.
Heneghan, C. J., Garcia-Alamino, J. M., Spencer,
E. A., Ward, A. M., Perera, R., Bankhead, C.,
Alonso Coello, P., Fitzmaurice, D., Mahtani, K. R.,
and Onakpoya, I. J. (2016). Self-monitoring and
self-management of oral anticoagulation. Cochrane
Database of Systematic Reviews, 2021(4).
Irfan, B., Hellou, M., Mazel, A., and Belpaeme, T. (2020).
Challenges of a Real-World HRI Study with Non-
Native English Speakers: Can Personalisation Save
the Day? In Companion of the 2020 ACM/IEEE In-
ternational Conference on Human-Robot Interaction,
pages 272–274, Cambridge United Kingdom. ACM.
Kamita, T., Ito, T., Matsumoto, A., Munakata, T., and In-
oue, T. (2019). A Chatbot System for Mental Health-
care Based on SAT Counseling Method. Mobile In-
formation Systems, 2019:9517321.
Kardas, P., Boven, J. F. M. v., Pinnock, H., Menditto,
E., Wettermark, B., Tsiligianni, I., and
´
Agh, T.
(2021). Disparities in European healthcare system
approaches to maintaining continuity of medication
for non-communicable diseases during the COVID-
19 outbreak. The Lancet Regional Health - Europe,
4:100099.
Khoury, H., Ragalie, W., Sanaiha, Y., Boutros, H., Rudasill,
S., Shemin, R. J., and Benharash, P. (2020). Read-
mission After Surgical Aortic Valve Replacement in
the United States. The Annals of Thoracic Surgery,
110(3):849–855.
Laranjo, L., Dunn, A. G., Tong, H. L., Kocaballi, A. B.,
Chen, J., Bashir, R., Surian, D., Gallego, B., Magrabi,
Remote Patient Monitoring Systems based on Conversational Agents for Health Data Collection
819