Carlier, M. (2021). Worldwide number of battery electric
vehicles in use from 2016 to 2020: (in millions).
Retrieved from https://www.statista.com/statistics/270
603/worldwide-number-of-hybrid-and-electric-vehicle
s-since-2009/
Codd, E. F. (1970). A relational model of data for large
shared data banks. Communications of the ACM, 13(6),
377–387. https://doi.org/10.1145/362384.362685
Cui, Y., Kara, S., & Chan, K. C. (2020). Manufacturing big
data ecosystem: A systematic literature review. Robotics
and Computer-Integrated Manufacturing, 62, 101861.
https://doi.org/10.1016/j.rcim.2019.101861
Defranceski, M. (2021). Auslesen und Nutzen von
Maschinendaten einfach gemacht. Wt Werkstattstechnik
Online, 111(03), 159–160. https://doi.org/10.37544/
1436–4980–2021–03–67
Fensel, D., Şimşek, U., Angele, K., Huaman, E., Kärle, E.,
Panasiuk, O., Toma, I., Umbrich, J., Wahler, A. (2020).
Why We Need Knowledge Graphs: Applications. In D.
Fensel, U. Şimşek, K. Angele, E. Huaman, E. Kärle, O.
Panasiuk, Toma, I., Umbrich, J., A. Wahler (Eds.),
Springer eBook Collection. Knowledge Graphs:
Methodology, Tools and Selected Use Cases (1st ed., pp.
95–112). Cham: Springer International Publishing;
Imprint Springer. https://doi.org/10.1007/978-3-030-
37439-6_4
Grevenitis, K., Psarommatis, F. [F.], Reina, A., Xu, W.,
Tourkogiorgis, I. [I.], Milenkovic, J., Cassina, J., Kiritsis,
D. [D.] (2019). A hybrid framework for industrial data
storage and exploitation. Procedia CIRP, 81, 892–897.
https://doi.org/10.1016/j.procir.2019.03.221
Grimmel, P., Wessel, J., Mennenga, M., & Herrmann, C.
(2022). Potentials of ontology-based knowledge
discovery in data bases for Learning Factories. SSRN
Electronic Journal. Advance online publication.
https://doi.org/10.2139/ssrn.4073026
Hao, Y., Qin, X., Chen, Y., Li, Y., Sun, X., Tao, Y., Zhang,
X., Du, X. (2021). TS-Benchmark: A Benchmark for
Time Series Databases. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE) (pp. 588–599).
IEEE. https://doi.org/10.1109/ICDE51399.2021.00057
Hasilová, K., & Vališ, D. (2018). Non-parametric estimates
of the first hitting time of Li-ion battery. Measurement,
113, 82–91. https://doi.org/10.1016/j.measurement.20
17.08.030
Hildebrand, M., Tourkogiorgis, I. [Ioannis], Psarommatis, F.
[Foivos], Arena, D., & Kiritsis, D. [Dimitris] (2019). A
Method for Converting Current Data to RDF in the Era
of Industry 4.0. In F. Ameri, K. E. Stecke, G. von
Cieminski, & D. Kiritsis (Eds.), IFIP Advances in
Information and Communication Technology. Advances
in Production Management Systems. Production
Management for the Factory of the Future (Vol. 566, pp.
307–314). Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-030-30000-5_39
Kalaycı, E. G., Grangel González, I., Lösch, F., Xiao, G., ul-
Mehdi, A., Kharlamov, E., & Calvanese, D. (2020).
Semantic Integration of Bosch Manufacturing Data
Using Virtual Knowledge Graphs. In J. Z. Pan, V.
Tamma, C. d’Amato, K. Janowicz, B. Fu, A. Polleres, O.
Seneviratne, L. Kagal (Eds.), Springer eBook Collection:
Vol. 12507. The Semantic Web – ISWC 2020: 19th
International Semantic Web Conference, Athens, Greece,
November 2–6, 2020, Proceedings, Part II (1st ed., Vol.
12507, pp. 464–481). Cham: Springer International
Publishing; Imprint Springer. https://doi.org/10.1007/
978-3-030-62466-8_29
Leavitt, N. (2010). Will NoSQL Databases Live Up to Their
Promise? Computer, 43(2), 12–14.
https://doi.org/10.1109/MC.2010.58
Malburg, L., Klein, P., & Bergmann, R. (2020, November 2
- 2020, November 4). Semantic Web Services for AI-
Research with Physical Factory Simulation Models in
Industry 4.0. In Proceedings of the International
Conference on Innovative Intelligent Industrial
Production and Logistics (pp. 32–43). SCITEPRESS -
Science and Technology Publications.
https://doi.org/10.5220/0010135900320043
O’Donovan, P., Leahy, K., Bruton, K., & O’Sullivan, D. T. J.
(2015). An industrial big data pipeline for data-driven
analytics maintenance applications in large-scale smart
manufacturing facilities. Journal of Big Data, 2(1).
https://doi.org/10.1186/s40537-015-0034-z
Schel, D., Henkel, C., Stock, D., Meyer, O., Rauhöft, G.,
Einberger, P., Stöhr, M., Daxer, M.A., Seidelmann, J.
(2018). Manufacturing Service Bus: An Implementation.
Procedia CIRP, 67, 179–184. https://doi.org/10.1016/
j.procir.2017.12.196
Tao, F., Qi, Q., Liu, A., & Kusiak, A. (2018). Data-driven
smart manufacturing. Journal of Manufacturing Systems,
48, 157–169. https://doi.org/10.1016/j.jmsy.2018.01.006
Turetskyy, A., Thiede, S., Thomitzek, M., Drachenfels, N.
von, Pape, T., & Herrmann, C. (2020). Toward Data‐
Driven Applications in Lithium‐Ion Battery Cell
Manufacturing. Energy Technology, 8(2), 1900136.
https://doi.org/10.1002/ente.201900136
Wessel, J., Turetskyy, A., Wojahn, O., Abraham, T., &
Herrmann, C. (2021). Ontology-based Traceability
System for Interoperable Data Acquisition in Battery
Cell Manufacturing. Procedia CIRP, 104, 1215–1220.
https://doi.org/10.1016/j.procir.2021.11.204
Yen, I.‑L., Zhang, S., Bastani, F., & Zhang, Y. (2017). A
Framework for IoT-Based Monitoring and Diagnosis of
Manufacturing Systems. In Sose 2017: 11th IEEE
International Symposium on Service-Oriented System
Engineering: Proceedings: 6-9 April 2017, San
Francisco, California (pp. 1–8). Piscataway, NJ: IEEE.
https://doi.org/10.1109/SOSE.2017.26
Yin, S., & Kaynak, O. (2015). Big Data for Modern Industry:
Challenges and Trends [Point of View]. Proceedings of
the IEEE, 103(2), 143–146. https://doi.org/10.1109/J
PROC.2015.2388958
Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. (2017).
Intelligent Manufacturing in the Context of Industry 4.0:
A Review. Engineering, 3(5), 616–630.
https://doi.org/10.1016/J.ENG.2017.05.015