Technology Innovation Program of Guangdong
Province (2017-03), National Natural Science
Foundation of China (51779013, U2040212),
Fundamental Research Funds for Central Public
Welfare Research Institutes (CKSF2021486/SZ,
CKSF2019478/SZ), and National Public Research
Institutes for Basic R & D Operating Expenses
Special Project (CKSF2017061/SZ).
REFERENCES
Ayzel, G., Heistermann, M., Sorokin, A., Nikitin, O. and
Lukyanova, O. (2019a). All convolutional neural
networks for radar-based precipitation nowcasting.
Procedia Computer Science. 150, 186-192.
Ayzel, G., Heistermann, M. and Winterrath, T. (2019b).
Optical flow models as an open benchmark for radar-
based precipitation nowcasting (rainymotion v0.1).
Geoscientific Model Development. 12(4), 1387-1402.
Ballas, N., Yao, L., Pal, C. and Courville, A. (2015).
Delving Deeper into Convolutional Networks for
Learning Video Representations. arXiv:1511.06432.
Bauer, P., Thorpe, A. and Brunet, G. (2015). The quiet
revolution of numerical weather prediction. Nature.
525(7567), 47-55.
Bližňák, V., Sokol, Z. and Zacharov, P. (2017). Nowcasting
of deep convective clouds and heavy precipitation:
Comparison study between NWP model simulation and
extrapolation. Atmospheric Research. 184, 24-34.
Klein, B., Wolf, L. and Afek, Y. 2015. A Dynamic
Convolutional Layer for short rangeweather prediction.
In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4840-4848.
LeCun, Y., Bengio, Y. and Hinton, G. (2015). Deep
learning. Nature. 521(7553), 436-44.
Qiu, M., Zhao, P., Zhang, K., Huang, J., Shi, X., Wang, X.
and Chu, W. 2017. A Short-Term Rainfall Prediction
Model Using Multi-task Convolutional Neural
Networks. In 2017 IEEE International Conference on
Data Mining (ICDM), pages 395-404.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M.,
Denzler, J., Carvalhais, N. and Prabhat (2019). Deep
learning and process understanding for data-driven
Earth system science. Nature. 566(7743), 195-204.
Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-k.
and Woo, W.-c. (2015). Convolutional LSTM
Network: A Machine Learning Approach for
Precipitation Nowcasting. arXiv:1506.04214.
Shi, X., Gao, Z., Lausen, L., Wang, H., Yeung, D.-Y.,
Wong, W.-k. and Woo, W.-c. (2017). Deep Learning
for Precipitation Nowcasting: A Benchmark and A
New Model. arXiv:1706.03458.
Simonin, D., Pierce, C., Roberts, N., Ballard, S. P. and Li,
Z. (2017). Performance of Met Office hourly cycling
NWP-based nowcasting for precipitation forecasts.
Quarterly Journal of the Royal Meteorological Society.
143(708), 2862-2873.
Song, K., Yang, G., Wang, Q., Xu, C., Liu, J., Liu, W., Shi,
C., Wang, Y., Zhang, G., Yu, X., Gu, Z. and Zhang, W.
2019. Deep Learning Prediction of Incoming Rainfalls:
An Operational Service for the City of Beijing China.
In 2019 International Conference on Data Mining
Workshops (ICDMW), pages 180-185.
Su, A., Li, H., Cui, L. and Chen, Y. (2020). A Convection
Nowcasting Method Based on Machine Learning.
Advances in Meteorology. 2020, 1-13.
Tian, L., Li, X., Ye, Y., Xie, P. and Li, Y. 2020. A
Generative Adversarial Gated Recurrent Unit Model
for Precipitation Nowcasting. In IEEE Geoscience
and Remote Sensing Letters, pages 601-605.
Tran, Q.-K. and Song, S.-k. (2019). Computer Vision in
Precipitation Nowcasting: Applying Image Quality
Assessment Metrics for Training Deep Neural
Networks. Atmosphere. 10(5).
Wang, G., Wong, W., Liu, L. and Wang, H. (2013).
Application of multi-scale tracking radar echoes
scheme in quantitative precipitation nowcasting.
Advances in Atmospheric Sciences. 30(2), 448-460.
Wang, Y., Wu, H., Zhang, J., Gao, Z., Wang, J., Yu, P. S.
and Long, M. (2021). PredRNN: A Recurrent Neural
Network for Spatiotemporal Predictive Learning.
arXiv:2103.09504.
Wang, Y., Zhang, J., Zhu, H., Long, M., Wang, J. and Yu,
P. S. (2018). Memory In Memory: A Predictive Neural
Network for Learning Higher-Order Non-Stationarity
from Spatiotemporal Dynamics. arXiv:1811.07490.