potholes detection using thermal imaging,’’ J. King
Saud Univ.-Comput. Inf. Sci.,, doi:
10.1016/j.jksuci.2019.02.004.
K. Azhar, F. Murtaza, M. H. Yousaf, and H.A. Habib
,2016. ‘‘Computer vision based detection and
localization of potholes in asphalt pavement images,’’
in Proc. IEEE Can. Conf. Electr. Comput. Eng.
(CCECE), pp. 1–5.
C. Koch and I. Brilakis, 2011. ‘‘Pothole detection in asphalt
pavement images,’’ Adv. Eng. Inform., vol. 25, no. 3,
pp. 507–515.
S.-K. Ryu, T. Kim and Y.-R. Kim, ‘‘Image based pothole
detection system for ITS service and road management
system, 2015.’’ Math. Problems Eng.,vol. 2015, Art.
no. 968361, doi: 10.1155/2015/968361.
I. Schiopu, J. P. Saarinen, L. Kettunen, and I. Tabus, 2016.
‘‘Pothole detection and tracking in car video
sequence,’’ in Proc. 39th Int. Conf. Telecommun.
Signal Process. (TSP), Vienna, Austria, pp. 701–706.
D. Ai, G. Jiang, L. Siew Kei, and C. Li, 2018. ‘‘Automatic
pixel level pavement crack detection using information
of multi-scale neighborhoods,’’ IEEE Access, vol. 6,
pp. 24452–24463.
H. Youquan, W. Jian, Q. Hanxing, W. Zhang, and X.
Jianfang, 2011. ‘‘A research of pavement potholes
detection based on three-dimensional projection
transformation,’’ in Proc. 4th Int. Congr. Image Signal
Process., pp. 1805–1808.
L. Zhang, F. Yang, Y. Daniel Zhang, and Y. J. Zhu, 2016.
‘‘Road crack detection using deep convolutional neural
network,’’ in Proc. IEEE Int. Conf. Image Process.
(ICIP), pp. 3708–3712.
Y. Li, C. Papachristou, and D. Weyer, 2018. ‘‘Road pothole
detection system based on stereo vision,’’ in Proc. IEEE
Nat. Aerosp. Electron. Conf. (NAECON), pp. 292–297.
I. Moazzam, K. Kamal, S. Mathavan, S. Usman, and M.
Rahman, 2013. ‘‘Metrology and visualization of
potholes using the microsoft kinect sensor,’’ in Proc.
16th Int. IEEE Conf. Intell. Transp. Syst. (ITSC),pp.
1284–1291
D. A. Casas Avellaneda and J. F. López-Parra, 2016.
‘‘Detection and localization of potholes in roadways
using smartphones,’’ DYNA, vol. 83, no. 195, pp. 156–
162.
W. G. Buttlar and M. S. Islam, 2014. Integration of Smart-
PhoneBased Pavement Roughness Data Collection
Tool With Asset Management System—National
Transportation Library. Accessed: May 20, 2019.
[Online]. Available: https://rosap.ntl.bts.gov/view/
dot/38287
Forslöf, L. and Jones, H., 2015. Roadroid: Continuous Road
Condition Monitoring with Smart Phones. Journal of
Civil Engineering and Architecture, 9(4).
C. Chellaswamy, H. Famitha, T. Anusuya, and S. B.
Amirthavarshini, 2018.‘‘IoT based humps and pothole
detection on roads and information sharing,’’ in Proc.
Int. Conf. Comput. Power, Energy, Inf. Commun.
(ICCPEIC), pp. 084–090.
Wiki.ros.org, 2020. ROS/Introduction - ROS Wiki.
[online] Available at: <http://wiki.ros.org/ROS/
Introduction> [Accessed 1 July 2020].
GitHub, 2020. Tzutalin/Labelimg. [online] Available at:
<https://github.com/tzutalin/labelImg> [Accessed 1
July 2020].
Anaconda, 2020. Anaconda | The World's Most Popular
Data Science Platform. [online] Available at:
<https://www.anaconda.com/> [Accessed 1 July 2020].
Medium, 2020. Breaking Down Mean Average Precision
(Map). [online] Available at: <https://towardsdata
science.com/breaking-down-mean-average-precision-
map-ae462f623a52> [Accessed 1 July 2020].
A. Rosebrock, 2020. Intersection Over Union (Iou)
For Object Detection - Pyimagesearch. [online]
PyImageSearch. Available at: <https://www.pyimage
search.com/2016/11/07/intersection-over-union-iou-
for-object-detection/> [Accessed 1 July 2020].
Team, K., 2020. Keras: The Python Deep Learning API.
[online] Keras.io. Available at: <https://keras.io/>
[Accessed 1 July 2020].
J. Redmon, and A. Farhadi, 2018. Yolov3: An Incremental
Improvement. [online] arXiv.org. Available at:
<https://arxiv.org/abs/1804.02767> [Accessed 1 July
2020].
A. Bochkovskiy, C. Wang, and H. Liao, 2020. Yolov4:
Optimal Speed And Accuracy Of Object Detection.
[online] arXiv.org. Available at: <https://arxiv.org/abs/
2004.10934> [Accessed 1 July 2020].
J. Dib, K. Sirlantzis and G. Howells, 2020. "A Review on
Negative Road Anomaly Detection Methods," in IEEE
Access, vol. 8, pp. 57298-57316, 2020, doi:
10.1109/ACCESS.2020.2982220.
Vupparaboina, K.K., Tamboli, R.R., Shenu, P.M., & Jana,
S., 2015. Laser-based detection and depth estimation of
dry and water-filled potholes: A geometric approach.
2015 Twenty First National Conference on
Communications (NCC), 1-6.
I. Saluja, R. Karwa, A. Bharambe, M Sabnis,
2019."Recognition and Depth Approximation of Dry &
Filled Potholes", International Journal of Innovative
Research in Science, Engineering and Technology, Vol.
8, Issue 8.
ITV News YouTube Channel,11 May 2018. Potholes
costing drivers and insurers ‘£1m a month’ | ITV News.
Available at: <https://www.youtube.com/watch?v=
MlDI-zlcc8I> [Accessed 15 September 2022].