Hamel, L. (2019). Vsom efficient, stochastic self-
organizing map training. In Proceedings of the 2018
Intelligent Systems Conference (IntelliSys) Volume 2,
pages 805–821.
Hamel, L., Ott, B., and Breard, G. (2016). pop-
som: Functions for Constructing and Evaluating Self-
Organizing Maps. R package version 4.1.0.
Hastie, T., Tibshirani, R., and Friedman, J. (2001). The
Elements of Statistical Learning. Springer Series in
Statistics. Springer New York Inc., New York, NY,
USA.
Jaaskelainen, P. (2019). Task parallelism with opencl: A
case study. Journal of Signal Processing Systems,
pages 33–46.
Kim, K.-H., Yun, S.-T., Yu, S., Choi, B.-Y., Kim, M.-J.,
and Lee, K.-J. (2020). Geochemical pattern recogni-
tions of deep thermal groundwater in south korea us-
ing self-organizing map: Identified pathways of geo-
chemical reaction and mixing. Journal of Hydrology,
589:125202.
Kohonen, T. (2001). Self-organizing maps. Springer Berlin.
Li, J., Chen, B. M., and Lee, G. H. (2018a). So-net: Self-
organizing network for point cloud analysis. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 9397–9406.
Li, T., Sun, G., Yang, C., Liang, K., Ma, S., and Huang, L.
(2018b). Using self-organizing map for coastal water
quality classification: Towards a better understanding
of patterns and processes. Science of The Total Envi-
ronment, 628-629:1446–1459.
Lokesh, S., Kumar, P. M., Devi, M. R., Parthasarathy, P.,
and Gokulnath, C. (2019). An automatic tamil speech
recognition system by using bidirectional recurrent
neural network with self-organizing map. Neural
Computing and Applications, 31(5):1521–1531.
Mallet, V., Nilges, M., and Bouvier, G. (2021a). Quicksom.
https://github.com/bougui505/quicksom.
Mallet, V., Nilges, M., and Bouvier, G. (2021b). quick-
som: Self-organizing maps on gpus for clustering
of molecular dynamics trajectories. Bioinformatics,
37(14):2064–2065.
Mancini, R., Ritacco, A., Lanciano, G., and Cucinotta, T.
(2020). Xpysom: high-performance self-organizing
maps. In 2020 IEEE 32nd International Symposium
on Computer Architecture and High Performance
Computing (SBAC-PAD), pages 209–216. IEEE.
Moraes, F. C., Botelho, S. C., Duarte Filho, N., and Gaya,
J. F. O. (2012). Parallel high dimensional self orga-
nizing maps using cuda. In 2012 Brazilian Robotics
Symposium and Latin American Robotics Symposium,
pages 302–306. IEEE.
Mor
´
an, A., Rossell
´
o, J. L., Roca, M., and Canals, V. (2020).
Soc kohonen maps based on stochastic computing. In
2020 International Joint Conference on Neural Net-
works (IJCNN), pages 1–7.
Nvidia.com (2020). Thrust quick start guide. https://
docs.nvidia.com/cuda/thrust/index.html#abstract. Ac-
cessed: 2020-04-30.
Pilla, L. L. (2018). Basics of vectorization for fortran appli-
cations. Research Report, RR-9147:1–9.
Ramos, M. A. C., Leme, B. C. C., de Almeida, L. F.,
Bizarria, F. C. P., and Bizarria, J. W. P. (2017). Clus-
tering wear particle using computer vision and self-
organizing maps. In 2017 17th International Confer-
ence on Control, Automation and Systems (ICCAS),
pages 4–8.
Rauber, Andreas, P. T. and Merkl, D. (2000). parsom: a
parallel implementation of the self-organizing map ex-
ploiting cache efects: making the som fit for interac-
tive high-performance data analysis. In Proceedings
of the IEEE-INNS-ENNS International Joint Confer-
ence on Neural Networks. IJCNN 2000, volume 6.
Richardson, T. and Winer, E. (2015). Extending paralleliza-
tion of the self-organizing map by combining data and
network partitioned methods. Advances in Engineer-
ing Software, 88:1–7.
Rivera-Morales, O. (2022). Par-vsom. https://github.com/
oxrm/Par-vsom.
Sarazin, T., Azzag, H., and Lebbah, M. (2014). Som clus-
tering using spark-mapreduce. In 2014 IEEE Interna-
tional Parallel & Distributed Processing Symposium
Workshops, pages 1727–1734. IEEE.
Schabauer, Hannes, E. S. and Weishaupl, T. (2005). Solv-
ing very large traveling salesman problems by som
parallelization on cluster architectures. In Sixth In-
ternatioanl Conference on Parallel and Distributed
Computer Applications and Technologies PDCAT’ 05,
pages 954–958. IEEE.
Silva, B. and Marques, N. (2007). A hybrid parallel som
algorithm for large maps in data-mining. New Trends
in Artificial Intelligence.
Street, W. N., Wolberg, W. H., and Mangasarian, O. L.
(1993). Nuclear feature extraction for breast tumor
diagnosis. In IS&T/SPIE’s Symposium on Electronic
Imaging: Science and Technology, pages 861–870. In-
ternational Society for Optics and Photonics.
Sul, S.-J. and Tovchigrechko, A. (2011). Parallelizing blast
and som algorithms with mapreduce-mpi library. In
2011 IEEE International Symposium on Parallel and
Distributed Processing Workshops and Phd Forum,
pages 481–489. IEEE.
Tatoian, R.and Hamel, L. (2018). Self-organizing map con-
vergence. International Journal of Service Science,
Management, Engineering, and Technology (IJSS-
MET), 9(2):61–84.
Thall, P. F. and Vail, S. C. (1990). Some covariance models
for longitudinal count data with overdispersion. Bio-
metrics, pages 657–671.
Vettigli, G. (2021). Minisom. https://github.com/
JustGlowing/minisom.
Wittek, P., Gao, S. C., Lim, I. S., and Zhao, L. (2013). So-
moclu: An efficient parallel library for self-organizing
maps. arXiv preprint arXiv:1305.1422.
NCTA 2022 - 14th International Conference on Neural Computation Theory and Applications
348