further publication could be a performance evaluation
and comparison between the MLP and MO procedure
and the trial-and-error procedure on a simulation
model.
REFERENCES
Alpaydın, Ethem (2019): Maschinelles Lernen. 2. Auflage.
Berlin, Boston: De Gruyter (De Gruyter Studium).
Andrei Solomon, Marin Litoiu (2011): Business Process
Performance Prediction on a Tracked Simulation
Model. In: Manuel Carro (Hg.): Proceedings of the 3rd
International Workshop on Principles of Engineering
Service-Oriented Systems. New York, NY: ACM
(ACM Conferences), S. 50–56.
Ankur Sinha, Pekka Malo, Peng Xu, Kalyanmoy Deb
(2014): A Bilevel Optimization Approach to
Automated Parameter Tuning. In: Proceedings and
companion publication of the 2014 Genetic and
Evolutionary Computation Conference, July 12 - 16,
2014, Vancouver, BC, Canada ; a recombination of the
23rd International Conference on Genetic Algorithms
(ICGA) and the 19th Annual Genetic Programming
Conference (GP) ; one conference - many mini-
conferences ; [and co-located workshops proceedings].
New York, NY: ACM, S. 847–854.
B. Cavallo, M. D. Penta, and G. Canfora (2010): An
empirical comparison of methods to support QoS-
aware service selection. In: Grace A. Lewis (Hg.):
Proceedings of the 2nd International Workshop on
Principles of Engineering Service-Oriented Systems.
New York, NY: ACM (ACM Conferences), S. 64–70.
Bei, Xiaohui; Chen, Ning; Zhang, Shengyu (2013): On the
complexity of trial and error. In: Dan Boneh, Tim
Roughgarden und Joan Feigenbaum (Hg.): Proceedings
of the 45th annual ACM symposium on Symposium on
theory of computing - STOC '13. the 45th annual ACM
symposium. Palo Alto, California, USA, 01.06.2013 -
04.06.2013. New York, New York, USA: ACM Press,
S. 31.
Box, George E. P. (2015): Time Series Analysis.
Forecasting and Control. 5th ed. Hoboken: Wiley
(Wiley Series in Probability and Statistics).
Egger, Dieter (2006): Sinus-Netzwerk. In: TU München:
Schriftenreihe des Instituts für Astronomische und
Physikalische Geodäsie und der Forschungseinrichtung
Satellitengeodäsie 22.
Jarre, Florian; Stoer, Josef (2019): Optimierung.
Einführung in mathematische Theorie und Methoden.
2. Auflage. Berlin, Heidelberg: Springer Spektrum
(Masterclass).
Laue, Ralf; Koschmider, Agnes; Fahland, Dirk (Hg.)
(2021): Prozessmanagement und Process-Mining.
Grundlagen. Berlin/München/Boston: Walter de
Gruyter GmbH (De Gruyter Studium Ser). Online
verfügbar unter https://ebookcentral.proquest.com/lib/
kxp/detail.action?docID=5156279.
Li Zheng, Chunqiu Zeng, Lei Li, Yexi Jiang, Wei Xue,
Jingxuan Li, Chao Shen, Wubai Zhou, Hongtai Li,
Liang Tang, Tao Li, Bing Duan, Ming Lei, Pengnian
Wang (2014): Applying Data Mining Techniques to
Address Critical Process Optimization Needs in
Advanced Manufacturing. In: Proceedings of the 20th
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, August 24 -
27, 2014, New York, NY, USA. New York, NY: ACM,
S. 1739–1748.
Nadir Mahammed, Souad Bennabi, Mahmoud Fahsi
(2020): Optimizing Business Process Designs with a
Multiple Population Genetic Algorithm. In: Richard
Chbeir (Hg.): Proceedings of the 10th International
Conference on Web Intelligence, Mining and
Semantics. New York, NY,United States: Association
for Computing Machinery (ACM Digital Library), S.
252–254.
Paasche, Simon; Groppe, Sven (2022): Enhancing data
quality and process optimization for smart
manufacturing lines in industry 4.0 scenarios. In: Sven
Groppe, Le Gruenwald und Ching-Hsien Hsu (Hg.):
Proceedings of The International Workshop on Big
Data in Emergent Distributed Environments.
SIGMOD/PODS '22: International Conference on
Management of Data. Philadelphia Pennsylvania, 12 06
2022 12 06 2022. New York, NY, USA: ACM, S. 1–7.
Papula, Lothar (2014): Mathematik für Ingenieure und
Naturwissenschaftler. 14., überarb. und erw. Aufl.
Erscheinungsort nicht ermittelbar (Mathematik für
Ingenieure und Naturwissenschaftler).
Rubin, Stuart H.; Fogel, David; Hanson, John C.; Kick,
Russell; Malki, Heidar A.; Sigwart, Charles et al.
(1993): The impact of machine learning on expert
systems. In: Stan C. Kwasny und John F. Buck (Hg.):
Proceedings of the 1993 ACM conference on Computer
science - CSC '93. the 1993 ACM conference.
Indianapolis, Indiana, United States, 16.02.1993 -
18.02.1993. New York, New York, USA: ACM Press,
S. 522–527.
Yan Wang, Juexin Wang, Wei Du, Chen Zhang, Yu Zhang,
Chunguang Zhou (2009): Parameters Optimization of
Support Vector Regression Based on Immune Particle
Swarm Optimization Algorithm. In: 2009 World
Summit on Genetic and Evolutionary Computation.
2009 GEC Summit; June 12 - 14, 2009, Shanghai,
China. New York, NY: ACM Press, S. 997–1000.
Zhaoxia Chen, Bailin He, and Xianfeng Xu (2011):
Application of Improved BP Neural Network in
Controlling the Constant-Force Grinding Feed. In:
Computer and computing technologies in agriculture
IV. 4th IFIP TC 12 conference, CCTA 2010, Nanchang,
China, October 22-25, 2010; selected papers.
Heidelberg: SPRINGER (IFIP advances in information
and communication technology, 347), S. 63–70.