in Industry 4.0. Robotics and Computer-Integrated
Manufacturing, 74(11), 1–15.
Cinar, Z., Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M.,
& Safaei, B. (2020). Machine Learning in Predictive
Maintenance towards Sustainable Smart Manufacturing
in Industry 4.0. Sustainability, 12(19), 1–36.
Diez-Olivan, A., Del Ser, J., Galar, D., & Sierra, B. (2019).
Data fusion and machine learning for industrial
prognosis: Trends and perspectives towards Industry
4.0. Information Fusion, 50(1), 92–111.
Dogan, A., & Birant, D. (2021). Machine learning and data
mining in manufacturing. Expert Systems with
Applications, 166(2), 11–19.
Essien, A., & Giannetti, C. (2019). A Deep Learning
Framework for Univariate Time Series Prediction
Using Convolutional LSTM Stacked Autoencoders.
IEEE International Symposium on Innovations in
Intelligent Systems and Applications, 1–6.
Giannetti, C., & Essien, A. (2022). Towards Scalable and
Reusable Predictive Models for Cyber Twins in
Manufacturing Systems. Journal of Intelligent
Manufacturing, 33(2), 441–455.
Giannetti, C., Ransing, M. R., Ransing, R. S., Bould, D. C.,
Gethin, D. T., & Sienz, J. (2015). Organisational
Knowledge Management for Defect Reduction and
Sustainable Development in Foundries. International
Journal of Knowledge and Systems Science, 6(3), 18–
37.
Giannetti, C., Ransing, M., Ransing, R., Bould, D. C.,
Gethin, D. T., & Sienz, J. (2014a). Product specific
process knowledge discovery using co-linearity index
and penalty functions to support process FMEA in the
steel industry. CIE 2014 - 44th International
Conference on Computers and Industrial Engineering
and IMSS 2014 - 9th International Symposium on
Intelligent Manufacturing and Service Systems, Joint
International Symposium on "The Social Impacts of
Developments in Information. 1–15.
Giannetti, C., Ransing, R., Ransing, M. R., Bould, D. C.,
Gethin, D. T., & Sienz, J. (2014b). A novel variable
selection approach based on co-linearity index to
discover optimal process settings by analysing mixed
data. Computers & Industrial Engineering, 72(1), 217–
229.
Huang, Z., Wu, J., & Xie, F. (2021). Automatic recognition
of surface defects for hot-rolled steel strip based on
deep attention residual convolutional neural network.
Materials Letters, 293(1), 3049–3055.
Janssen, C. P., Donker, S. F., Brumby, D. P., & Kun, A. L.
(2019). History and future of human-automation
interaction. International Journal of Human-Computer
Studies, 131(1), 99–107.
Kalantri, R., & Chandrawat, S. (2013). Root Cause
Assessment for a Manufacturing Industry: A Case
Study. Journal of Engineering Science and Technology
Review, 6(1), 62–67.
Khramshin, V. R., Evdokimov, S. A., Yu, A. I., Shubin, A.
G., & Karandaev, A. S. (2015). Algorithm of no-pull
control in the continuous mill train. 2015 International
Siberian Conference on Control and Communications
(SIBCON). 1–5.
Latham, S., Giannetti, C. (2021). Pre-Trained CNN for
Classification of Time Series Images of Anti-Necking
Control in a Hot Strip Mill. The 9
th
IIAE International
Conference on Industrial Engineering 2021
(ICIAE2021). 77–84.
Li, X., Luan, F., & Wu, Y. (2020). A Comparative
Assessment of Six Machine Learning Models for
Prediction of Bending Force in Hot Strip Rolling
Process. Metals, 10(5), 1–16.
Madden, S. (2012). From Databases to Big Data. In IEEE
Internet Computing, 16(3), 4–6.
Mahto, D., & Kumar, A. (2008). Application of root cause
analysis in improvement of product quality and
productivity. Journal of Industrial Engineering and
Management, 1(2), 16–53.
Martinez-Gil, J., Buchgeher, G., Gabauer, D.,
Freudenthaler, B., Filipiak, D., & Fensel, A. (2022).
Root Cause Analysis in the Industrial Domain using
Knowledge Graphs: A Case Study on Power
Transformers. Procedia Computer Science, 200(3),
944–953.
Murugaiah, U., Benjamin, S. J., Marathamuthu, M. S., &
Muthaiyah, S. (2010). Scrap loss reduction using the 5-
whys analysis. International Journal of Quality &
Reliability Management, 27(5), 527–540.
Nam, D. N. C., Van Tung, T., & Yee, E. Y. K. (2021).
Quality monitoring for injection moulding process
using a semi-supervised learning approach. IECON
2021 – 47th Annual Conference of the IEEE Industrial
Electronics Society. 1–6.
Ohno, T., & Bodek, N. (1988). Toyota Production System:
Beyond Large-Scale Production (1st Edition).
Productivity Press. 136–142.
Oliveira, E., Miguéis, V. L., & Borges, J. (2022). Automatic
root cause analysis in manufacturing: an overview &
conceptualization. Journal of Intelligent
Manufacturing, 33(5), 1–18.
Radionov, A. A., Gasiyarov, V. R., Karandaev, A. S.,
Usatiy, D. Y., & Khramshin, V. R. (2020). Dynamic
Load Limitation in Electromechanical Systems of the
Rolling Mill Stand during Biting. 2020 IEEE 11
th
International Conference on Mechanical and
Intelligent Manufacturing Technologies (ICMIMT).
149–154.
Roshan, H., Giannetti, C., Ransing, M., & Ransing, R.
(2014). "If only my foundry knew what it knows…" : a
7Epsilon perspective on root cause analysis and
corrective action plans for ISO9001:2008. 71st World
Foundry Congress: Advanced Sustainable Foundry,
WFC 2014. 1–15.
Sarkar, A., Mukhopadhyay, A., & Ghosh, S. (2013). Root
cause analysis, Lean Six Sigma and test of hypothesis.
The TQM Journal, 25(2), 170–185.
Schober, P., Boer, C., & Schwarte, L. A. (2018).
Correlation coefficients: appropriate use and
interpretation. Anesthesia & Analgesia, 126(5), 1763–
1768.