Cherl, N. M. and Locsin, R. J. F. (2018). Neural networks
application for water distribution demand-driven de-
cision support system. Journal of Advances in Tech-
nology and Engineering Studies, 4(4):162–175. DOI:
10.20474/jater-4.4.3.
Contreras, A., G-A., R., E., M., and D-C., F. (1999). The sol
formulas for converting smog readability scores be-
tween health education materials written in spanish,
english, and french. Journal of Health Communica-
tions, 4:21–29.
Dale, E. and Chall, S. (1948). A formula for predicting
readability. Educational Research Bulletin, 27(1):1–
20.
Dijkstra, E. W. (1959). A note on two problems in connex-
ion with graphs. Numerische Mathematik, 1(1):269–
271. DOI: 10.1007/bf01386390.
DuBay, W. H. (2004). The principles of readability. In
Impact Information, pages –, Cost Mesa California.
Flesch, R. (1946). The art of plain talk. Harper, New York.
Floyd, R. W. (1962). Algorithm 97: Shortest path.
Communications of the ACM, 5(6):345–350. DOI:
10.1145/367766.368168.
Gunning, R. (1952). The technique of clear writing.
McGraw-Hill.
Huerta, F. J. (1959). Medidas sencillas de lecturabili-
dad. In Revista pedag
´
ogica de la secci
´
on femenina
de Falange ET y de las JONS, pages 29–32.
Kleinberg, J. M. (1999). Authoritative sources in a hy-
perlinked environment. Journal of the ACM (JACM),
46(5):604–632. DOI: 10.1145/324133.324140.
Lee, Y. W., Strong, D. M., Kahn, B. K., and Wang, R. Y.
(2002). Aimq: A methodology for information quality
assessment. Information & Management, 40(2):133–
146. DOI: 10.1016/s0378-7206(02)00043-5.
Liang, G. and Nagata, K. (2011). A study on e-business
website evaluation formula with variables of informa-
tion quality score. In Proceedings of the 12th Asia
Pacific Industrial Engineering and Management Sys-
tems Conference, pages –.
McLaughlin, G. H. (1969). Smog grading-a new readability
formula. Journal of Reading, 12(8):639–646.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. In ICLR Workshop Paper, pages –.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2015). Distributed representations of words
and phrases and their compositionality. In Advances in
Neural Information Processing Systems, pages 3111–
3119.
Nagata, K. (2019). Website evaluation using cluster struc-
tures. Journal of Advances in Technology and Engi-
neering Research, 5(1):25–36. DOI: 10.20474/jater-
5.1.3.
Noorzad, A. N. and Sato, T. (2017). Multi-criteria fuzzy-
based handover decision system for heterogeneous
wireless networks. International Journal of Technol-
ogy and Engineering Studies, 3(4):159–168. DOI:
10.20469/ijtes.3.40004-4.
Salton, G., Wong, A., and Yang, C.-S. (1975). A vec-
tor space model for automatic indexing. Com-
munications of the ACM, 18(11):613–620. DOI:
10.1109/icectech.2011.5941988.
Schvaneneldt, R. W., Dearholt, D., and Durso, F.
(1988). Graph theoretic foundations of pathfinder net-
works. Computers & Mathematics with Applications,
15(4):337–345. DOI: 10.1016/0898-1221(88)90221-
0.
Shoda, R., Matsuda, T., Yoshida, T., Motoda, H., and
Washio, T. (2003). Graph clustering with structure
similarity. In Proceedings of the 17th Annual Confer-
ence of the Japanese Society for Artificial Intelligence,
pages –, New York, NY.
Thorup, M. (2004). Integer priority queues with
decrease key in constant time and the single
source shortest paths problem. Journal of Com-
puter and System Sciences, 69(3):330–353. DOI:
10.1016/j.jcss.2004.04.003.
Tsatsaronis, G. and Panagiotopoulou, V. (2009). A gener-
alized vector space model for text retrieval based on
semantic relatedness. In Proceeding of EACL 2009
Student Research Workshop, pages 70–78, Athens,
Greece. Association for Computational Linguistics.
Waitelonis, J., Exeler, C., and Sack, H. (2015). Linked data
enabled generalized vector space model to improve
document retrieval. In CEUR Workshop Proceedings,
pages –. CEUR-WS.org.
Warshall, S. (1962). A theorem on boolean matrices. In
Proceedings of the ACM, pages –, Berlin, Germany.
ISSN 1613-0073.
Weiss, R., Velez, B., Sheldon, M., Namprempre, C., Szi-
lagyi, P., Duda, A., and Gifford, A. (1996). Hypur-
suit: A hierarchical network search engine that ex-
ploits content-link hypertext clustering. In Proceed-
ings of the 7th ACM Conference on Hypertext, pages
180–193.
Wong, S. K. M., Ziarko, W., and Wong, P. C. N. (1985).
Generalized vector spaces model in information re-
trieval. In Proceeding of the 8th SIGIR Conference on
Research and Development in Information Retrieval,
pages 18–25. ACM.
Xu, X., Yuruk, N., Feng, Z., and Schweiger, T. A. (2007).
Scan: A structural clustering algorithm for networks.
In Proceedings of the 13th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining, pages –, Jakarta, Indonesia. ISSN:2414-.
WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies
248