sic and extrinsic relationships between the concepts
constituting a specific organizational context in which
JAs are processed.
REFERENCES
Alfonso-Hermelo, D., Langlais, P., and Bourg, L. (2019).
Automatically Learning a Human-Resource Ontology
from Professional Social-Network Data. In Canadian
AI 2019: Advances in Artificial Intelligence, volume
11489 of LNAI, pages 132–145. Springer.
Breaugh, J. A. (2013). Employee Recruitment. Annual Re-
view of Psychology, 64:389–416.
Cabrera-Diego, L. A., El-B
´
eze, M., Torres-Moreno, J. M.,
and Durette, B. (2019). Ranking r
´
esum
´
es automati-
cally using only r
´
esum
´
es: A method free of job offers.
Expert Systems with Applications, 123:91–107.
Campos, R., Mangaravite, V., Pasquali, A., Jorge, A. M.,
Nunes, C., and Jatowt, A. (2018). YAKE! Collection-
Independent Automatic Keyword Extractor. In Ad-
vances in Information Retrieval, pages 806–810.
Springer.
C¸ elik, D. (2016). Towards a semantic-based information
extraction system for matching r
´
esum
´
es to job open-
ings. Turkish Journal of Electrical Engineering and
Computer Sciences, 24(1):141–159.
Cram, D. and Daille, B. (2016). Terminology extraction
with term variant detection. In Proceedings of ACL-
2016 system demonstrations, pages 13–18.
Da Costa Pereira, C. and Tettamanzi, A. G. B. (2010). An
integrated possibilistic framework for goal generation
in cognitive agents. In Proceedings of the 9th Interna-
tional Conference on Autonomous Agents and Multia-
gent Systems: Volume 1, pages 1239––1246.
Dagli, R., Shaikh, A. M., Mahdi, H., and Nanivadekar, S.
(2021). Job Descriptions Keyword Extraction using
Attention based Deep Learning Models with BERT.
In 3rd International Congress on Human-Computer
Interaction, Optimization and Robotic Applications
(HORA), pages 1–6.
Deng, Y., Lei, H., Li, X., and Lin, Y. (2018). An im-
proved deep neural network model for job matching.
In 2018 International Conference on Artificial Intelli-
gence and Big Data (ICAIBD), pages 106–112.
Frantzi, K. T., Ananiadou, S., and Tsujii, J. (2002). The
C-value/NC-value Method of Automatic Recognition
for Multi-word Terms. Research and Advanced Tech-
nology for Digital Libraries, 1513:585 – 604.
Guo, S., Alamudun, F., and Hammond, T. (2016).
R
´
esuMatcher: A personalized r
´
esum
´
e-job matching
system. Expert Systems with Applications, 60:169–
182.
Kessler, R., B
´
echet, N., Roche, M., Torres-Moreno, J. M.,
and El-B
`
eze, M. (2012). A hybrid approach to manag-
ing job offers and candidates. Information Processing
and Management, 48(6):1124–1135.
Kiselyova, E. I., Koroshchenko, K. R., and Robson, G.
(2021). Legal Horizons Content of the Job Descrip-
tion: Features and Areas of Concern. Legal Horizons,
14(2):63–69.
Le Vrang, M., Papantoniou, A., Pauwels, E., Fannes, P.,
Vandensteen, D., and De Smedt, J. (2014). ESCO:
Boosting job matching in Europe with semantic inter-
operability. Computer, 47(10):57–64.
Martin Jr., D., Prabhakaran, V., Kuhlberg, J., Smart, A.,
and Isaac, W. S. (2020). Extending the Machine
Learning Abstraction Boundary: A Complex Sys-
tems Approach to Incorporate Societal Context. arXiv
2006.09663.
Mc Gurk, S., Abela, C., and Debattista, J. (2017). To-
wards Ontology Quality Assessment. http://ceur-ws.
org/Vol-1824/ldq paper 2.pdf.
Pavlick, E. and Kwiatkowski, T. (2019). Inherent disagree-
ments in human textual inferences. Transactions of
the Association for Computational Linguistics, 7:677–
694.
Reimers, N. and Gurevych, I. (2019). Sentence-BERT: Sen-
tence Embeddings using Siamese BERT-Networks.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3982–3992. Association for Computational Linguis-
tics.
Rose, S., Engel, D., Cramer, N., and Cowley, W. (2010).
Automatic Keyword Extraction from Individual Docu-
ments, chapter 1, pages 1–20. John Wiley and Sons.
Roy, P. K., Chowdhary, S. S., and Bhatia, R. (2020). A Ma-
chine Learning approach for automation of Resume
Recommendation system. Procedia Computer Sci-
ence, 167:2318–2327.
Somodevilla Garc
´
ıa, M., Vilari
˜
no Ayala, D., Pineda, I., So-
modevilla Garc
´
ıa, M., Vilari
˜
no Ayala, D., and Pineda,
I. (2018). An Overview of Ontology Learning Tasks.
Computaci
´
on y Sistemas, 22(1):137–146.
Wang, X., Jiang, Z., and Peng, L. (2021). A Deep-Learning-
Inspired Person-Job Matching Model Based on Sen-
tence Vectors and Subject-Term Graphs. Complexity,
2021:1–11.
Yuan, Y. and Shaw, M. J. (1995). Induction of fuzzy deci-
sion trees. Fuzzy Sets and Systems, 69(2):125–139.
Zapata Jaramillo, C. M. and Arango Isaza, F. (2009). The
UNC-method: a problem-based software develop-
ment method. Ingenier
´
ıa e Investigaci
´
on, 29:69–75.
Zehtab-Salmasi, A., Feizi-Derakhshi, M.-R., and Balafar,
M.-A. (2021). FRAKE: Fusional Real-time Auto-
matic Keyword Extraction. arXiv 2104.04830.
Zhao, J., Wang, J., Sigdel, M., Zhang, B., Hoang, P., Liu,
M., and Korayem, M. (2021). Embedding-based Rec-
ommender System for Job to Candidate Matching on
Scale. arXiv 2107.00221v1.
Zhu, C., Zhu, H., Xie, F., Ding, P., Xiong, H., Ma, C., and
Li, P. (2018). Person-Job Fit: Adapting the Right Tal-
ent for the Right Job with Joint Representation Learn-
ing. ACM Transactions on Management Information
Systems, 9:1–17.
FCTA 2022 - 14th International Conference on Fuzzy Computation Theory and Applications
174