George, A., Mostaani, Z., Geissenbuhler, D., Nikisins, O.,
Anjos, A., and Marcel, S. (2019). Biometric face pre-
sentation attack detection with multi-channel convo-
lutional neural network. IEEE Transactions on Infor-
mation Forensics and Security, 15:42–55. 2
Goadrich, M., Oliphant, L., and Shavlik, J. (2004).
Learning ensembles of first-order clauses for recall-
precision curves: A case study in biomedical informa-
tion extraction. In International Conference on Induc-
tive Logic Programming, pages 98–115. Springer. 3.4
Graves, A., Beringer, N., and Schmidhuber, J. (2005).
Rapid retraining on speech data with lstm recurrent
networks. Technical Report IDSIA-09–05, IDSIA.
3.3.1
Graves, A. and Schmidhuber, J. (2005). Framewise
phoneme classification with bidirectional lstm and
other neural network architectures. Neural networks,
18(5-6):602–610. 3.3.1
Grechishnikova, D. (2021). Transformer neural network for
protein-specific de novo drug generation as a machine
translation problem. Scientific reports, 11(1):1–13.
3.3.2
Hochreiter, S. and Schmidhuber, J. (1997a). Long short-
term memory. Neural computation, 9(8):1735–1780.
3.3.1
Hochreiter, S. and Schmidhuber, J. (1997b). Lstm can solve
hard long time lag problems. Advances in neural in-
formation processing systems, pages 473–479. 3.3.1
Iuliano, A. D., Roguski, K. M., Chang, H. H., Muscatello,
D. J., Palekar, R., Tempia, S., Cohen, C., Gran, J. M.,
Schanzer, D., Cowling, B. J., et al. (2018). Esti-
mates of global seasonal influenza-associated respi-
ratory mortality: a modelling study. The Lancet,
391(10127):1285–1300. 1
James, S. H. and Whitley, R. J. (2017). Influenza viruses.
In Infectious diseases, pages 1465–1471. Elsevier. 1
Kerzel, M., Ali, M., Ng, H. G., and Wermter, S. (2017).
Haptic material classification with a multi-channel
neural network. In 2017 International Joint Confer-
ence on Neural Networks (IJCNN), pages 439–446.
IEEE. 2
Kincaid, C. (2018). N-gram methods for influenza host
classification. In Proceedings of the International
Conference on Bioinformatics & Computational Biol-
ogy (BIOCOMP), pages 105–107. The Steering Com-
mittee of The World Congress in Computer Science,
Computer . . . . 2
Kwon, E., Cho, M., Kim, H., and Son, H. S. (2020).
A study on host tropism determinants of influenza
virus using machine learning. Current Bioinformat-
ics, 15(2):121–134. 2
Lau, L. L., Cowling, B. J., Fang, V. J., Chan, K.-H., Lau,
E. H., Lipsitch, M., Cheng, C. K., Houck, P. M.,
Uyeki, T. M., Peiris, J. M., et al. (2010). Viral
shedding and clinical illness in naturally acquired in-
fluenza virus infections. The Journal of infectious dis-
eases, 201(10):1509–1516. 1
Mills, C. E., Robins, J. M., and Lipsitch, M. (2004).
Transmissibility of 1918 pandemic influenza. Nature,
432(7019):904–906. 1
Mock, F., Viehweger, A., Barth, E., and Marz, M. (2021).
Vidhop, viral host prediction with deep learning.
Bioinformatics, 37(3):318–325. 2
Pyankova, O. G., Susloparov, I. M., Moiseeva, A. A.,
Kolosova, N. P., Onkhonova, G. S., Danilenko, A. V.,
Vakalova, E. V., Shendo, G. L., Nekeshina, N. N.,
Noskova, L. N., et al. (2021). Isolation of clade 2.3.
4.4 b a (h5n8), a highly pathogenic avian influenza
virus, from a worker during an outbreak on a poul-
try farm, russia, december 2020. Eurosurveillance,
26(24):2100439. 4
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang,
S., Matena, M., Zhou, Y., Li, W., and Liu, P. J.
(2019). Exploring the limits of transfer learning
with a unified text-to-text transformer. arXiv preprint
arXiv:1910.10683. 3.3.2
Saito, T. and Rehmsmeier, M. (2015). The precision-recall
plot is more informative than the roc plot when eval-
uating binary classifiers on imbalanced datasets. PloS
one, 10(3):e0118432. 3.4
Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R.,
and Comolli, J. (2019). Predicting influenza a tropism
with end-to-end learning of deep networks. Health
security, 17(6):468–476. 2
Shaw, M. and Palese, P. (2013). Orthomyxoviridae, p 1151–
1185. fields virology. 1
Sherif, F. F., Zayed, N., and Fakhr, M. (2017). Classifica-
tion of host origin in influenza a virus by transferring
protein sequences into numerical feature vectors. Int
J Biol Biomed Eng, 11. 2
Shu, Y. and McCauley, J. (2017). Gisaid: Global initia-
tive on sharing all influenza data–from vision to real-
ity. Eurosurveillance, 22(13):30494. 3.1.1
Squires, R. B., Noronha, J., Hunt, V., Garc
´
ıa-Sastre, A.,
Macken, C., Baumgarth, N., Suarez, D., Pickett, B. E.,
Zhang, Y., Larsen, C. N., et al. (2012). Influenza re-
search database: an integrated bioinformatics resource
for influenza research and surveillance. Influenza and
other respiratory viruses, 6(6):404–416. 3.1.1
Su, W., Yuan, Y., and Zhu, M. (2015). A relationship be-
tween the average precision and the area under the roc
curve. In Proceedings of the 2015 International Con-
ference on The Theory of Information Retrieval, pages
349–352. 3.4
Thireou, T. and Reczko, M. (2007). Bidirectional
long short-term memory networks for predicting
the subcellular localization of eukaryotic proteins.
IEEE/ACM transactions on computational biology
and bioinformatics, 4(3):441–446. 3.3.1
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
(2017). Attention is all you need. Advances in neural
information processing systems, 30. 3.3.2, 3.4
Vemula, S. V., Zhao, J., Liu, J., Wang, X., Biswas, S., and
Hewlett, I. (2016). Current approaches for diagno-
sis of influenza virus infections in humans. Viruses,
8(4):96. 2
Wang, Y., Niu, S., Zhang, B., Yang, C., and Zhou, Z. (2021).
Withdrawn: The whole genome analysis for the first
End-to-End Multi-channel Neural Networks for Predicting Influenza a Virus Hosts and Antigenic Types
49