Fei-Fei, L., Fergus, R., and Perona, P. (2003). A bayesian
approach to unsupervised one-shot learning of object
categories. In proceedings ninth IEEE international
conference on computer vision, pages 1134–1141.
IEEE.
Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic
meta-learning for fast adaptation of deep networks.
CoRR, abs/1703.03400.
Harmsen, W. W., Groot, J. d., and Dusseldorp, I. v. (2021).
Medical guidelines dutch association medical special-
ists. Datastorage of published guidelins on the Dutch
Medical Guideline Database.
Howard, B. E., Phillips, J., Miller, K., Tandon, A., Mav,
D., Shah, M. R., Holmgren, S., Pelch, K. E., Walker,
V., Rooney, A. A., et al. (2016). Swift-review: a text-
mining workbench for systematic review. Systematic
reviews, 5(1):1–16.
IBM Cloud Education (2021). Natural language process-
ing (NLP). https://www.ibm.com/cloud/learn/natural-
language-processing. [Online; acessed 08-March-
2022].
Ioannidis, A. (2021). An analysis of a bert deep learning
strategy on a technology assisted review task. arXiv
preprint arXiv:2104.08340.
Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift. CoRR, abs/1502.03167.
Kontonatsios, G., Spencer, S., Matthew, P., and Korkontze-
los, I. (2020). Using a neural network-based feature
extraction method to facilitate citation screening for
systematic reviews. Expert Systems with Applications:
X, 6:100030.
Kusa, W., Hanbury, A., and Knoth, P. (2022). Automation
of citation screening for systematic literature reviews
using neural networks: A replicability study. arXiv
preprint arXiv:2201.07534.
Lanera, C., Minto, C., Sharma, A., Gregori, D., Berchialla,
P., and Baldi, I. (2018). Extending pubmed searches
to clinicaltrials.gov through a machine learning ap-
proach for systematic reviews. Journal of Clinical
Epidemiology, 103:22–30.
Matwin, S., Kouznetsov, A., Inkpen, D., Frunza, O., and
O’Blenis, P. (2010). A new algorithm for reducing
the workload of experts in performing systematic
reviews. Journal of the American Medical Informatics
Association, 17(4):446–453.
Nichol, A., Achiam, J., and Schulman, J. (2018).
On first-order meta-learning algorithms. CoRR,
abs/1803.02999.
Peters, M. E., Neumann, M., Iyyer, M., Gardner, M.,
Clark, C., Lee, K., and Zettlemoyer, L. (2018).
Deep contextualized word representations. CoRR,
abs/1802.05365.
Qin, X., Liu, J., Wang, Y., Liu, Y., Deng, K., Ma, Y., Zou,
K., Li, L., and Sun, X. (2021). Natural language
processing was effective in assisting rapid title and
abstract screening when updating systematic reviews.
Journal of Clinical Epidemiology, 133:121–129.
Sellak, H., Ouhbi, B., and Frikh, B. (2015). Using rule-
based classifiers in systematic reviews: a semantic
class association rules approach. In Proceedings
of the 17th International Conference on Information
Integration and Web-based Applications & Services,
pages 1–5.
Sun, C., Qiu, X., Xu, Y., and Huang, X. (2019). How
to fine-tune bert for text classification? In Sun,
M., Huang, X., Ji, H., Liu, Z., and Liu, Y., editors,
Chinese Computational Linguistics, pages 194–206,
Cham. Springer International Publishing.
Tsafnat, G., Glasziou, P., Karystianis, G., and Coiera, E.
(2018). Automated screening of research studies
for systematic reviews using study characteristics.
Systematic reviews, 7(1):1–9.
van de Schoot, R., de Bruin, J., Schram, R., Zahedi, P.,
de Boer, J., Weijdema, F., Kramer, B., Huijts, M.,
Hoogerwerf, M., Ferdinands, G., et al. (2021). An
open source machine learning framework for efficient
and transparent systematic reviews. Nature Machine
Intelligence, 3(2):125–133.
van den Bulk, L. M., Bouzembrak, Y., Gavai, A., Liu, N.,
van den Heuvel, L. J., and Marvin, H. J. (2022). Auto-
matic classification of literature in systematic reviews
on food safety using machine learning. Current Re-
search in Food Science, 5:84–95.
van der Maaten, L. and Hinton, G. E. (2008). Visualizing
data using t-sne. Journal of Machine Learning Re-
search, 9:2579–2605.
van Dinter, R., Catal, C., and Tekinerdogan, B. (2021a).
A decision support system for automating document
retrieval and citation screening. Expert Systems with
Applications, 182:115261.
van Dinter, R., Catal, C., and Tekinerdogan, B. (2021b). A
multi-channel convolutional neural network approach
to automate the citation screening process. Applied
Soft Computing, 112:107765.
van Dinter, R., Tekinerdogan, B., and Catal, C. (2021c). Au-
tomation of systematic literature reviews: A system-
atic literature review. Inf. Softw. Technol., 136:106589.
Wang, S., Fang, H., Khabsa, M., Mao, H., and Ma, H.
(2021). Entailment as few-shot learner. CoRR,
abs/2104.14690.
Weigang, L. and da Silva, N. C. (1999). A study of parallel
neural networks. In IJCNN’99. International Joint
Conference on Neural Networks. Proceedings (Cat.
No. 99CH36339), volume 2, pages 1113–1116. IEEE.
Yi, J. S. K., Seo, M., Park, J., and Choi, D.-G. (2022). Using
self-supervised pretext tasks for active learning. arXiv
preprint arXiv:2201.07459.
APPENDIX
Tables containing the datasets description and experi-
ments results.
WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies
42