IDC. Press release from IDC on December 06, 2021.
Retrieved March 04, 2022, from https://www.idc.com/
getdoc.jsp?containerId=prUS48460121.
Jayanti, R. K., & Burns, A. C. (1998). The antecedents of
preventive health care behavior: An empirical study.
Journal of the academy of marketing science, 26(1), 6-
15.
Kim, D. J., Lee, Y., Rho, S., & Lim, Y. K. (2016, May).
Design opportunities in three stages of relationship
development between users and self-tracking devices.
In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (pp. 699-703).
Kim, J., & Park, H. A. (2012). Development of a health
information technology acceptance model using
consumers’ health behavior intention. Journal of
medical Internet research, 14(5), e133.
Klasnja, P., Consolvo, S., & Pratt, W. (2011, May). How to
evaluate technologies for health behavior change in
HCI research. In Proceedings of the SIGCHI
conference on human factors in computing systems (pp.
3063-3072).
Lazar, A., Koehler, C., Tanenbaum, T. J., & Nguyen, D. H.
(2015, September). Why we use and abandon smart
devices. In Proceedings of the 2015 ACM international
joint conference on pervasive and ubiquitous
computing (pp. 635-646).
Leong, L. Y., Ooi, K. B., Chong, A. Y. L., & Lin, B. (2013).
Modeling the stimulators of the behavioral intention to
use mobile entertainment: does gender really matter?.
Computers in Human Behavior, 29(5), 2109-2121.
Li, I., Dey, A., & Forlizzi, J. (2010, April). A stage-based
model of personal informatics systems. In Proceedings
of the SIGCHI conference on human factors in
computing systems (pp. 557-566).
Liébana-Cabanillas, F., Marinković, V., & Kalinić, Z.
(2017). A SEM-neural network approach for predicting
antecedents of m-commerce acceptance. International
Journal of Information Management, 37(2), 14-24.
Limayem, M., Hirt, S. G., & Cheung, C. M. (2007). How
habit limits the predictive power of intention: The case
of information systems continuance. MIS quarterly,
705-737.
Lindqvist, J., Cranshaw, J., Wiese, J., Hong, J., &
Zimmerman, J. (2011, May). I'm the mayor of my
house: examining why people use foursquare-a social-
driven location sharing application. In Proceedings of
the SIGCHI conference on human factors in computing
systems (pp. 2409-2418).
Lupton, D. (2017). Self-tracking, health and medicine.
Health Sociology Review, 26(1), 1-5.
Moore, G. C., & Benbasat, I. (1991). Development of an
instrument to measure the perceptions of adopting an
information technology innovation. Information
systems research, 2(3), 192-222.
Myers, B., Hudson, S. E., & Pausch, R. (2000). Past,
present, and future of user interface software tools.
ACM Transactions on Computer-Human Interaction
(TOCHI), 7(1), 3-28.
Negnevitsky, M. (2005). Artificial intelligence: a guide to
intelligent systems. Pearson education.
Patel, M. S., Asch, D. A., & Volpp, K. G. (2015). Wearable
devices as facilitators, not drivers, of health behavior
change. Jama, 313(5), 459-460.
Ringle, C. M., Sarstedt, M., & Straub, D. W. (2012).
Editor's comments: a critical look at the use of PLS-
SEM in" MIS Quarterly". MIS quarterly, iii-xiv.
Rooksby, J., Rost, M., Morrison, A., & Chalmers, M.
(2014, April). Personal tracking as lived informatics. In
Proceedings of the SIGCHI conference on human
factors in computing systems (pp. 1163-1172).
Shih, P. C., Han, K., Poole, E. S., Rosson, M. B., & Carroll,
J. M. (2015). Use and adoption challenges of wearable
activity trackers. IConference 2015 proceedings.
Sol, R., & Baras, K. (2016, September). Assessment of
activity trackers: toward an acceptance model. In
Proceedings of the 2016 ACM International Joint
Conference on Pervasive and Ubiquitous Computing:
Adjunct (pp. 570-575).
Spiekermann, S. (2007). User control in ubiquitous
computing: design alternatives and user acceptance.
Habilitation Humboldt Universität Berlin.
Svozil, D., Kvasnicka, V., & Pospichal, J. (1997).
Introduction to multi-layer feed-forward neural
networks. Chemometrics and intelligent laboratory
systems, 39(1), 43-62.
Tan, G. W. H., Ooi, K. B., Leong, L. Y., & Lin, B. (2014).
Predicting the drivers of behavioral intention to use
mobile learning: A hybrid SEM-Neural Networks
approach. Computers in Human Behavior, 36, 198-213.
Tang, L. M., Meyer, J., Epstein, D. A., Bragg, K., Engelen,
L., Bauman, A., & Kay, J. (2018). Defining adherence:
Making sense of physical activity tracker data.
Proceedings of the ACM on interactive, mobile,
wearable and ubiquitous technologies, 2(1), 1-22.
Temir, E., O'Kane, A. A., Marshall, P., & Blandford, A.
(2016, May). Running: A flexible situated study. In
Proceedings of the 2016 CHI Conference Extended
Abstracts on Human Factors in Computing Systems
(pp. 2906-2914).