Badal, F., Das, P., and et al., S. S. (2019). A survey on
control issues in renewable energy integration and mi-
crogrid. Protection and Control of Modern Power Sys-
tems, 4.
Balestra, L. and Schjølberg, I. (2021). Energy manage-
ment strategies for a zero-emission hybrid domes-
tic ferry. International Journal of Hydrogen Energy,
46(77):38490–38503.
Capillo, A., Luzi, M., Pasc, M., Rizzi, A., and Mascioli, F.
M. F. (2018). Energy transduction optimization of a
wave energy converter by evolutionary algorithms. In
2018 International Joint Conference on Neural Net-
works (IJCNN), pages 1–8.
Chen, L., McPhee, J., and Yeh, W. W.-G. (2007). A diver-
sified multiobjective ga for optimizing reservoir rule
curves. Advances in Water Resources, 30(5):1082–
1093.
De Santis, E., Rizzi, A., and Sadeghian, A. (2017). Hier-
archical genetic optimization of a fuzzy logic system
for energy flows management in microgrids. Applied
Soft Computing, 60:135–149.
De Santis, E., Rizzi, A., Sadeghiany, A., and Frattale
Mascioli, F. M. (2013). Genetic optimization of a
fuzzy control system for energy flow management in
micro-grids. In 2013 Joint IFSA World Congress and
NAFIPS Annual Meeting (IFSA/NAFIPS), pages 418–
423.
Departement of Energy, U. (2016). Crystalline silicon pho-
tovoltaic research. http://www.energy.gov/eere/solar/
crystalline-silicon-photovoltaics-research.
Dietz, A., Azzaro-Pantel, C., Pibouleau, L., and Domenech,
S. (2008). Strategies for multiobjective genetic al-
gorithm development: Application to optimal batch
plant design in process systems engineering. Comput-
ers & Industrial Engineering, 54(3):539–569.
Duman, A. C., Erden, H. S.,
¨
Omer G
¨
on
¨
ul, and
¨
Onder
G
¨
uler (2021). A home energy management system
with an integrated smart thermostat for demand re-
sponse in smart grids. Sustainable Cities and Society,
65:102639.
EC (2020). Photovoltaic geographical information system.
http://re.jrc.ec.europa.eu/pvg tools/en/.
Ellabban, O., H.Abu-Rub, and Blaabjerg, F. (2014). Renew-
able energy resources: Current status, future prospects
and their enabling technology. Renewable and Sus-
tainable Energy Reviews, 39:748–764.
Ferrandino, E., Capillo, A., Frattale Mascioli, F. M., and
Rizzi, A. (2020). Nanogrids: A smart way to inte-
grate public transportation electric vehicles into smart
grids. In 12th International Joint Conference on Com-
putational Intelligence, volume 16.
Hafiz Abdul Muqeet, a. H. M. M., Javed, H., Shahzad, M.,
Jamil, M., and Guerrero, J. M. (2021). An energy
management system of campus microgrids: State-of-
the-art and future challenges. Energies, 14(20).
Kim, I. and de Weck, O. (2005). Adaptive weighted-sum
method for bi-objective optimization: Pareto front
generation. Structural and Multidisciplinary Opti-
mization, 29(2):149–158.
Koski, J. (1985). Defectiveness of weighting method in
multicriterion optimization of structures. Communi-
cations in Applied Numerical Methods, 1(6):333–337.
Layton, B. E. (2008). A comparison of energy densities of
prevalent energy sources in units of joules per cubic
meter. International Journal of Green Energy, 5:438–
455.
Li, X.-H., Cao, C. C., Shi, Y., Bai, W., Gao, H., Qiu, L.,
Wang, C., Gao, Y., Zhang, S., Xue, X., and Chen, L.
(2022). A survey of data-driven and knowledge-aware
explainable ai. IEEE Transactions on Knowledge and
Data Engineering, 34(1):29–49.
Palm, R. (2004). Synchronization of decentralized multiple-
model systems by market-based optimization. IEEE
Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), 34(1):665–671.
Pozna, C., Precup, R.-E., Horvath, E., and Petriu, E. M.
(2022). Hybrid particle filter-particle swarm opti-
mization algorithm and application to fuzzy controlled
servo systems. IEEE Transactions on Fuzzy Systems,
pages 1–1.
Rafiei, M., Boudjadar, J., and Khooban, M.-H. (2021). En-
ergy management of a zero-emission ferry boat with a
fuel-cell-based hybrid energy system: Feasibility as-
sessment. IEEE Transactions on Industrial Electron-
ics, 68(2):1739–1748.
Slama, S. B. (2021). Design and implementation of home
energy management system using vehicle to home
(h2v) approach. Journal of Cleaner Production,
312:127792.
Tesla (2019). Pawerwall 2 datasheet. http://www.tesla.com/
powerwall.
Unveren, A. and Acan, A. (2007). Multi-objective optimiza-
tion with cross entropy method: Stochastic learning
with clustered pareto fronts. In 2007 IEEE Congress
on Evolutionary Computation, pages 3065–3071.
Xiang, Y. and Yang, X. (2021). An ecms for multi-objective
energy management strategy of parallel diesel electric
hybrid ship based on ant colony optimization algo-
rithm. Energies, 14(4).
Zamfirache, I. A., Precup, R.-E., Roman, R.-C., and Petriu,
E. M. (2022). Reinforcement learning-based control
using q-learning and gravitational search algorithm
with experimental validation on a nonlinear servo sys-
tem. Information Sciences, 583:99–120.
¨
Ozdemir, H., G
¨
uldorum, H. C., Erdinc¸, O., and
˙
Ibrahim
S¸eng
¨
or (2021). Energy management of a port serv-
ing fuel cell and battery based hybrid green ferries. In
2021 International Conference on Smart Energy Sys-
tems and Technologies (SEST), pages 1–6.
Z
¨
urich, E. (2020). Open power system data. http://data.
open-power-system-data.org/time series/.
FCTA 2022 - 14th International Conference on Fuzzy Computation Theory and Applications
208