work. In 2011 International Conference on Compu-
tational Aspects of Social Networks (CASoN), pages
237–242.
Candeloro, L., Savini, L., and Conte, A. (2016). A
new weighted degree centrality measure: The ap-
plication in an animal disease epidemic. PloS one,
11(11):e0165781.
Chakrabarti, D. (2005). Tools for large graph mining.
Carnegie Mellon University.
Chakrabarti, D., Zhan, Y., and Faloutsos, C. (2004). R-mat:
A recursive model for graph mining. In Proceedings
of the 2004 SIAM International Conference on Data
Mining, pages 442–446. SIAM.
Cohen, E., Delling, D., Pajor, T., and Werneck, R. F. (2014).
Computing classic closeness centrality, at scale. In
Proceedings of the Second ACM Conference on On-
line Social Networks, COSN ’14, page 37–50, New
York, NY, USA. ACM.
De Domenico, M., Sol
´
e-Ribalta, A., Cozzo, E., Kivel
¨
a, M.,
Moreno, Y., Porter, M. A., G
´
omez, S., and Arenas,
A. (2013). Mathematical formulation of multilayer
networks. Physical Review X, 3(4):041022.
Everett, M. G. and Borgatti, S. P. (1999). The centrality
of groups and classes. The Journal of mathematical
sociology, 23(3):181–201.
Fortunato, S. and Castellano, C. (2009). Community struc-
ture in graphs. In Ency. of Complexity and Systems
Science, pages 1141–1163.
Gaye, I., Mendy, G., Ouya, S., Diop, I., and Seck, D.
(2016). Multi-diffusion degree centrality measure to
maximize the influence spread in the multilayer so-
cial networks. In International Conference on e-
Infrastructure and e-Services for Developing Coun-
tries, pages 53–65. Springer.
Hagberg, A., Swart, P., and S Chult, D. (2008). Explor-
ing network structure, dynamics, and function using
networkx. Technical report, Los Alamos National
Lab.(LANL), Los Alamos, NM (United States).
Khorasani, F., Gupta, R., and Bhuyan, L. N. (2015). Scal-
able simd-efficient graph processing on gpus. In
Proceedings of the 24th International Conference on
Parallel Architectures and Compilation Techniques,
PACT ’15, pages 39–50.
Kivel
¨
a, M., Arenas, A., Barthelemy, M., Gleeson, J. P.,
Moreno, Y., and Porter, M. A. (2014). Multilayer net-
works. Journal of Complex Networks, 2(3):203–271.
Kretschmer, H. and Kretschmer, T. (2007). A new central-
ity measure for social network analysis applicable to
bibliometric and webometric data. Collnet J. of and
Information Management, 1(1):1–7.
Liu, Y., Wei, B., Du, Y., Xiao, F., and Deng, Y. (2016). Iden-
tifying influential spreaders by weight degree central-
ity in complex networks. Chaos, Solitons & Fractals,
86:1–7.
Pavel, H. R., Santra, A., and Chakravarthy, S. (2022).
Closeness centrality algorithms for multilayer net-
works.
Pedroche, F., Romance, M., and Criado, R. (2016). A biplex
approach to pagerank centrality: From classic to mul-
tiplex networks. Chaos: An Interdisciplinary Journal
of Nonlinear Science, 26(6):065301.
Rachman, Z. A., Maharani, W., and Adiwijaya (2013). The
analysis and implementation of degree centrality in
weighted graph in social network analysis. In 2013
International Conference of Information and Commu-
nication Technology (ICoICT), pages 72–76.
Risselada, H., Verhoef, P. C., and Bijmolt, T. H. (2016). In-
dicators of opinion leadership in customer networks:
self-reports and degree centrality. Marketing Letters,
27(3):449–460.
Santra, A. and Bhowmick, S. (2017). Holistic analysis of
multi-source, multi-feature data: Modeling and com-
putation challenges. In Big Data Analytics - Fifth In-
ternational Conference, BDA 2017.
Santra, A., Bhowmick, S., and Chakravarthy, S. (2017a).
Efficient community re-creation in multilayer net-
works using boolean operations. In International Con-
ference on Computational Science, ICCS 2017, 12-14
June 2017, Zurich, Switzerland, pages 58–67.
Santra, A., Bhowmick, S., and Chakravarthy, S. (2017b).
Hubify: Efficient estimation of central entities across
multiplex layer compositions. In IEEE International
Conference on Data Mining Workshops.
Santra, A., Komar, K. S., Bhowmick, S., and Chakravarthy,
S. (2020). A new community definition for multilayer
networks and A novel approach for its efficient com-
putation. CoRR, abs/2004.09625.
Shi, Z. and Zhang, B. (2011). Fast network centrality anal-
ysis using gpus. BMC Bioinformatics, 12(1).
Sol
´
a, L., Romance, M., Criado, R., Flores, J., Garc
´
ıa del
Amo, A., and Boccaletti, S. (2013). Eigenvector
centrality of nodes in multiplex networks. Chaos:
An Interdisciplinary Journal of Nonlinear Science,
23(3):033131.
Srinivas, A. and Velusamy, R. L. (2015). Identification of
influential nodes from social networks based on en-
hanced degree centrality measure. In 2015 IEEE In-
ternational Advance Computing Conference (IACC),
pages 1179–1184.
Tang, X., Wang, J., Zhong, J., and Pan, Y. (2013). Pre-
dicting essential proteins based on weighted degree
centrality. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 11(2):407–418.
Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K.,
Grimshaw, A., Hazlewood, V., Lathrop, S., Lifka, D.,
Peterson, G. D., Roskies, R., Scott, J., and Wilkins-
Diehr, N. (2014). Xsede: Accelerating scientific
discovery. Computing in Science and Engineering,
16(05):62–74.
Uddin, S. and Hossain, L. (2011). Time scale degree cen-
trality: A time-variant approach to degree centrality
measures. In 2011 International Conference on Ad-
vances in Social Networks Analysis and Mining, pages
520–524. IEEE.
Wang, X., Hu, T., Yang, Q., Jiao, D., Yan, Y., and Liu, L.
(2021). Graph-theory based degree centrality com-
bined with machine learning algorithms can predict
response to treatment with antiepileptic medications
in children with epilepsy. Journal of Clinical Neuro-
science, 91:276–282.
Yang, Y., Dong, Y., and Chawla, N. V. (2014). Predicting
node degree centrality with the node prominence pro-
file. Scientific reports, 4(1):1–7.
KDIR 2022 - 14th International Conference on Knowledge Discovery and Information Retrieval
62