ACKNOWLEDGEMENTS
The computational results were partly achieved by us-
ing the Vienna Scientific Cluster (VSC)
CONFLICTS OF INTEREST
The authors declare no conflict of interest.
REFERENCES
Bai, W., Chen, C., Tarroni, G., Duan, J., Guitton, F., Pe-
tersen, S. E., Guo, Y., Matthews, P. M., and Rueckert,
D. (2019). Self-Supervised Learning for Cardiac MR
Image Segmentation by Anatomical Position Predic-
tion. In Shen, D., Liu, T., Peters, T. M., Staib, L. H.,
Essert, C., Zhou, S., Yap, P.-T., and Khan, A., editors,
Medical Image Computing and Computer Assisted
Intervention – MICCAI 2019, volume 11765, pages
541–549. Springer International Publishing, Cham.
Bernard, O., Lalande, A., Zotti, C., Cervenansky, F., Yang,
X., Heng, P.-A., Cetin, I., Lekadir, K., Camara, O.,
Gonzalez Ballester, M. A., Sanroma, G., Napel, S.,
Petersen, S., Tziritas, G., Grinias, E., Khened, M.,
Kollerathu, V. A., Krishnamurthi, G., Rohe, M.-M.,
Pennec, X., Sermesant, M., Isensee, F., Jager, P.,
Maier-Hein, K. H., Full, P. M., Wolf, I., Engelhardt,
S., Baumgartner, C. F., Koch, L. M., Wolterink, J. M.,
Isgum, I., Jang, Y., Hong, Y., Patravali, J., Jain, S.,
Humbert, O., and Jodoin, P.-M. (2018). Deep Learn-
ing Techniques for Automatic MRI Cardiac Multi-
Structures Segmentation and Diagnosis: Is the Prob-
lem Solved? IEEE Transactions on Medical Imaging,
37(11):2514–2525.
Chen, C., Qin, C., Qiu, H., Tarroni, G., Duan, J., Bai, W.,
and Rueckert, D. (2020). Deep Learning for Cardiac
Image Segmentation: A Review. Frontiers in Cardio-
vascular Medicine, 7:25.
Ciga, O. and Martel, A. L. (2021). Learning to segment im-
ages with classification labels. Medical Image Analy-
sis, 68:101912.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Identity
mappings in deep residual networks. In Leibe, B.,
Matas, J., Sebe, N., and Welling, M., editors, Com-
puter Vision – ECCV 2016, pages 630–645, Cham.
Springer International Publishing.
Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. (2017). Densely connected convolutional net-
works. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2261–2269.
Madani, A., Ong, J. R., Tibrewal, A., and Mofrad, M. R. K.
(2018). Deep echocardiography: Data-efficient su-
pervised and semi-supervised deep learning towards
automated diagnosis of cardiac disease. npj Digital
Medicine, 1(1):1–11.
Oktay, O., Ferrante, E., Kamnitsas, K., Heinrich, M., Bai,
W., Caballero, J., Cook, S. A., de Marvao, A., Dawes,
T., O’Regan, D. P., Kainz, B., Glocker, B., and Rueck-
ert, D. (2018). Anatomically Constrained Neural Net-
works (ACNNs): Application to Cardiac Image En-
hancement and Segmentation. IEEE Transactions on
Medical Imaging, 37(2):384–395.
Peng, P., Lekadir, K., Gooya, A., Shao, L., Petersen, S. E.,
and Frangi, A. F. (2016). A review of heart cham-
ber segmentation for structural and functional analy-
sis using cardiac magnetic resonance imaging. Mag-
netic Resonance Materials in Physics, Biology and
Medicine, 29(2):155–195.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
net: Convolutional networks for biomedical image
segmentation. In Navab, N., Hornegger, J., Wells,
W. M., and Frangi, A. F., editors, Medical Image Com-
puting and Computer-Assisted Intervention – MICCAI
2015, pages 234–241, Cham. Springer International
Publishing.
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. (2020). Grad-CAM: Vi-
sual Explanations from Deep Networks via Gradient-
Based Localization. International Journal of Com-
puter Vision, 128(2):336–359.
Simonyan, K. and Zisserman, A. (2015). Very deep con-
volutional networks for large-scale image recognition.
In International Conference on Learning Representa-
tions.
Tran, P. V. (2016). A fully convolutional neural network
for cardiac segmentation in short-axis mri. ArXiv,
abs/1604.00494.
Zimmer, V. A., Gomez, A., Skelton, E., Ghavami, N.,
Wright, R., Li, L., Matthew, J., Hajnal, J. V., and
Schnabel, J. A. (2020). A Multi-task Approach Using
Positional Information for Ultrasound Placenta Seg-
mentation. In Hu, Y., Licandro, R., Noble, J. A., Hut-
ter, J., Aylward, S., Melbourne, A., Abaci Turk, E.,
and Torrents Barrena, J., editors, Medical Ultrasound,
and Preterm, Perinatal and Paediatric Image Analy-
sis, volume 12437, pages 264–273. Springer Interna-
tional Publishing, Cham.
SDAIH 2022 - Scarce Data in Artificial Intelligence for Healthcare
16