Braam, F. and van den Berg, D. (2022). Which rectangle
sets have perfect packings? Operations Research Per-
spectives, page 100211.
Cheeseman, P. C., Kanefsky, B., and Taylor, W. M. (1991).
Where the really hard problems are. In IJCAI, vol-
ume 91, pages 331–340.
Dijkzeul, D., Brouwer, N., Pijning, I., Koppenhol, L., and
Van den Berg, D. (2022). Painting with evolutionary
algorithms. In International Conference on Compu-
tational Intelligence in Music, Sound, Art and Design
(Part of EvoStar), pages 52–67. Springer.
Fraga, E. S. (2019). An example of multi-objective opti-
mization for dynamic processes. Chemical Engineer-
ing Transactions, 74:601–606.
Garey, M. R. and Johnson, D. S. (2002). Computers and
intractability, volume 29. wh freeman New York.
Garey, M. R., Johnson, D. S., and Tarjan, R. E. (1976). The
planar hamiltonian circuit problem is np-complete.
SIAM Journal on Computing, 5(4):704–714.
Geleijn, R., van der Meer, M., van der Post, Q., and van den
Berg, D. (2019). The plant propagation algorithm on
timetables: First results. EVO* 2019, page 2.
Gent, I. P. and Walsh, T. (1996). The tsp phase transition.
Artificial Intelligence, 88(1-2):349–358.
Haddadi, S. (2020). Plant propagation algorithm for nurse
rostering. International Journal of Innovative Com-
puting and Applications, 11(4):204–215.
Hayes, B. (1997). Computing science: Can’t get no satis-
faction. American scientist, 85(2):108–112.
Held, M. and Karp, R. M. (1962). A dynamic program-
ming approach to sequencing problems. Journal of
the Society for Industrial and Applied Mathematics,
10(1):196–210.
Iori, M., De Lima, V., Martello, S., and M., M. (2021a).
2dpacklib: a two-dimensional cutting and packing li-
brary (in press). Optimization Letters.
Iori, M., de Lima, V. L., Martello, S., Miyazawa, F. K., and
Monaci, M. (2021b). Exact solution techniques for
two-dimensional cutting and packing. European Jour-
nal of Operational Research, 289(2):399–415.
Iori, M., de Lima, V. L., Martello, S., and Monaci, M.
(2021c). 2dpacklib.
Karp, R. M. (1972). Reducibility among combinatorial
problems. In Complexity of computer computations,
pages 85–103. Springer.
Karp, R. M. (2008). Reducibility among combinatorial
problems. 50 Years of Integer Programming 1958–
2008, page 219.
Koml
´
os, J. and Szemer
´
edi, E. (1983). Limit distribution for
the existence of hamiltonian cycles in a random graph.
Discrete Mathematics, 43(1):55–63.
Larrabee, T. and Tsuji, Y. (1992). Evidence for a satisfia-
bility threshold for random 3CNF formulas. Citeseer.
Martello, S. (1983). Algorithm 595: An enumerative al-
gorithm for finding Hamiltonian circuits in a directed
graph. ACM Transactions on Mathematical Software
(TOMS), 9(1):131–138.
Paauw, M. and van den Berg, D. (2019). Paintings,
polygons and plant propagation. In International
Conference on Computational Intelligence in Music,
Sound, Art and Design (Part of EvoStar), pages 84–
97. Springer.
Rodman, A. D., Fraga, E. S., and Gerogiorgis, D. (2018).
On the application of a nature-inspired stochastic
evolutionary algorithm to constrained multi-objective
beer fermentation optimisation. Computers & Chemi-
cal Engineering, 108:448–459.
Rubin, F. (1974). A search procedure for hamilton paths and
circuits. Journal of the ACM (JACM), 21(4):576–580.
Salhi, A. and Fraga, E. S. (2011). Nature-inspired optimi-
sation approaches and the new plant propagation algo-
rithm.
Selamo
˘
glu, B.
˙
I. and Salhi, A. (2016). The plant propaga-
tion algorithm for discrete optimisation: The case of
the travelling salesman problem. In Nature-inspired
computation in engineering, pages 43–61. Springer.
Skiena, S. S. (1998). The algorithm design manual. page
247.
Sleegers, J., Olij, R., van Horn, G., and van den Berg, D.
(2020). Where the really hard problems aren’t. Oper-
ations Research Perspectives, 7:100160.
Sleegers, J. and van den Berg, D. (2020a). Looking for
the hardest hamiltonian cycle problem instances. In
IJCCI, pages 40–48.
Sleegers, J. and van den Berg, D. (2020b). Plant propaga-
tion & hard hamiltonian graphs. Evo* 2020, page 10.
Sleegers, J. and Van den Berg, D. (2021). Backtracking
(the) algorithms on the hamiltonian cycle problem. In-
ternational Journal On Advances in Intelligent Sys-
tems, 14:1–13.
Sleegers, J. and van den Berg, D. (2022). The hardest hamil-
tonian cycle problem instances: the plateau of yes and
the cliff of no. SCSC. (In press.).
Source (2022). Publicly accessible source code, in-
stances & results. https://github.com/Joeri1324/
Universally-Hard-Hamiltonian-Cycle-Problem-Instances.
Last accessed june 18
th
, 2022.
Sulaiman, M., Salhi, A., Fraga, E. S., Mashwani, W. K., and
Rashidi, M. M. (2016). A novel plant propagation al-
gorithm: modifications and implementation. Science
International, 28(1):201–209.
Sulaiman, M., Salhi, A., Khan, A., Muhammad, S., and
Khan, W. (2018). On the theoretical analysis of the
plant propagation algorithms. Mathematical Problems
in Engineering, 2018.
Van Den Berg, D. and Adriaans, P. (2021). Subset sum
and the distribution of information. In Proceedings of
the 13th International Joint Conference on Computa-
tional Intelligence, pages 135–141.
van den Berg, D., Braam, F., Moes, M., Suilen, E., Bhulai,
S., et al. (2016). Almost squares in almost squares:
solving the final instance.
van Horn, G., Olij, R., Sleegers, J., and van den Berg, D.
(2018). A predictive data analytic for the hardness of
hamiltonian cycle problem instances. DATA ANALYT-
ICS 2018, page 101.
Vandegriend, B. and Culberson, J. (1998). The gn, m
phase transition is not hard for the Hamiltonian cycle
problem. Journal of Artificial Intelligence Research,
9:219–245.
Vrielink, W. and van den Berg, D. (2019). Fireworks algo-
rithm versus plant propagation algorithm.
Universally Hard Hamiltonian Cycle Problem Instances
111