Arabshahi, F., Lee, J., Bosselut, A., Choi, Y., and Mitchell,
T. (2021). Conversational multi-hop reasoning with
neural commonsense knowledge and symbolic logic
rules. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 7404–7418.
Basile, V., Cabrio, E., and Schon, C. (2016). Knews: Us-
ing logical and lexical semantics to extract knowledge
from natural language. In Proceedings of the Euro-
pean conference on artificial intelligence (ECAI) 2016
conference.
Bird, S., Klein, E., and Loper, E. (2009). Natural Language
Processing with Python. O’Reilly Media.
Bos, J. (2008). Wide-coverage semantic analysis with
boxer. In Bos, J. and Delmonte, R., editors, Semantics
in Text Processing. STEP 2008 Conference Proceed-
ings, Venice, Italy, September 22-24, 2008. Associa-
tion for Computational Linguistics.
Brewka, G. (1994). Adding priorities and specificity to de-
fault logic. In European Workshop on Logics in Arti-
ficial Intelligence, pages 247–260. Springer.
Davis, E. (2017). Logical formalizations of commonsense
reasoning: a survey. Journal of Artificial Intelligence
Research, 59:651–723.
Fuchs, N. E., Kaljurand, K., and Kuhn, T. (2008). At-
tempto controlled english for knowledge represen-
tation. In Baroglio, C., Bonatti, P. A., Maluszyn-
ski, J., Marchiori, M., Polleres, A., and Schaffert,
S., editors, Reasoning Web, 4th International Sum-
mer School 2008, Venice, Italy, September 7-11, 2008,
Tutorial Lectures, volume 5224 of Lecture Notes in
Computer Science, pages 104–124. Springer.
Furbach, U. and Schon, C. (2016). Commonsense rea-
soning meets theorem proving. In German Confer-
ence on Multiagent System Technologies, pages 3–17.
Springer.
Garnelo, M. and Shanahan, M. (2019). Reconciling deep
learning with symbolic artificial intelligence: repre-
senting objects and relations. Current Opinion in Be-
havioral Sciences, 29:17–23.
Gashteovski, K., Gemulla, R., and Del Corro, L. (2017).
Minie: Minimizing facts in open information extrac-
tion. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 2630–2640.
He, W., Huang, C., Liu, Y., and Zhu, X. (2021). Wino-
logic: A zero-shot logic-based diagnostic dataset for
winograd schema challenge. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 3779–3789.
Hwang, J. D., Bhagavatula, C., Le Bras, R., Da, J., Sak-
aguchi, K., Bosselut, A., and Choi, Y. (2021). (comet-
) atomic 2020: On symbolic and neural commonsense
knowledge graphs. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages
6384–6392.
Marcus, G. (2020). The next decade in AI: four
steps towards robust artificial intelligence. CoRR
abs/2002.06177.
McCarthy, J. (1989). Artificial intelligence, logic and for-
malizing common sense. In Philosophical logic and
artificial intelligence, pages 161–190. Springer.
Qi, P., Zhang, Y., Zhang, Y., Bolton, J., and Manning, C. D.
(2020). Stanza: A Python natural language processing
toolkit for many human languages. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics: System Demonstrations.
Reiter, R. (1980). A logic for default reasoning. Artificial
Intelligence, 13(1–2):81–132.
Riegel, R., Gray, A., Luus, F., Khan, N., Makondo, N.,
Akhalwaya, I. Y., Qian, H., Fagin, R., Barahona, F.,
Sharma, U., et al. (2020). Logical neural networks.
arXiv preprint arXiv:2006.13155.
Romero, J., Razniewski, S., Pal, K., Pan, J. Z., Sakhadeo,
A., and Weikum, G. (2019). Commonsense properties
from query logs and question answering forums. In
Zhu, W., Tao, D., Cheng, X., Cui, P., Rundensteiner,
E. A., Carmel, D., He, Q., and Yu, J. X., editors, Proc.
of CIKM’19 – the 28th ACM Intl. Conf. on Informa-
tion and Knowledge Management, pages 1411–1420.
ACM.
Speer, R., Chin, J., and Havasi, C. (2017). ConceptNet
5.5: An open multilingual graph of general knowl-
edge. In Singh, S. P. and Markovitch, S., editors, Proc.
of AAAI’2017 – the 31st AAAI Conf. on Artificial In-
telligence, pages 4444–4451. AAAI.
Tammet, T. (2020). JSON-LD-LOGIC homepage. https:
//github.com/tammet/json-ld-logic.
Tammet, T., Draheim, D., and J
¨
arv, P. (2022). GK: im-
plementing full first order default logic for common-
sense reasoning (system description). In Blanchette,
J., Kov
´
acs, L., and Pattinson, D., editors, Automated
Reasoning - 11th International Joint Conference, IJ-
CAR 2022, Haifa, Israel, August 8-10, 2022, Proceed-
ings, volume 13385 of Lecture Notes in Computer Sci-
ence, pages 300–309. Springer.
Tammet, T. and Sutcliffe, G. (2021). Combining json-
ld with first order logic. In 2021 IEEE 15th Inter-
national Conference on Semantic Computing (ICSC),
pages 256–261. IEEE.
Trinh, T. H. and Le, Q. V. (2018). A simple
method for commonsense reasoning. arXiv preprint
arXiv:1806.02847.
West, P., Bhagavatula, C., Hessel, J., Hwang, J. D., Jiang,
L., Bras, R. L., Lu, X., Welleck, S., and Choi, Y.
(2021). Symbolic knowledge distillation: from gen-
eral language models to commonsense models. CoRR,
abs/2110.07178.
Ylonen, T. (2022). English machine-readable dictionary.
https://kaikki.org/dictionary/English/index.html.
Zhang, C. (2015). DeepDive: a data management system
for automatic knowledge base construction. PhD the-
sis, The University of Wisconsin-Madison.
Knowledge Integration for Commonsense Reasoning with Default Logic
155