5 CONCLUSION
In this paper we show that the learning process can
be bootstrapped with the automatic creation of masks.
The path to improve the results is straightforward:
The initial masks need to be reviewed and improved
further (see section 2.1). More data needs to be added
where the model fails. For example to teach the model
to correctly segment RBCs that stick to white blood
cells, more such images and segmentation masks are
needed. The masks can be created by letting the al-
ready existing model predict most of the mask, mak-
ing manual adjustments only necessary where the
model fails to segment the cells correctly. To further
improve model training one could also adopt more re-
cent approaches to data augmentation such as Ran-
dAugment (Cubuk et al., 2019).
In the age of deep learning it is often forgotten
that image processing tasks, such as biomedical im-
age segmentation, can be solved to a large degree with
a simple algorithm that does not require a parameter-
ized model and a large training set. In our case we
could solve the biggest part of the problem (segment-
ing free-standing RBCs) with just a few lines of code
and use the resulting masks to generate enough train-
ing data to train a modern segmentation model.
ACKNOWLEDGEMENTS
We thank Anton Hasenkampf for carefully reviewing
our draft.
REFERENCES
Aitken, A., Ledig, C., Theis, L., Caballero, J., Wang, Z., and
Shi, W. (2017). Checkerboard artifact free sub-pixel
convolution. page 16.
Bain, J., B. (2014). Blood Cells: A Practical Guide. 5
edition.
Bruegel, M., George, T. I., Feng, B., Allen, T. R., Bracco,
D., Zahniser, D. J., and Russcher, H. (2018). Multi-
center evaluation of the cobas m 511 integrated hema-
tology analyzer. Int J Lab Hem, 40(6):672–682.
Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. V. (2019).
RandAugment: Practical automated data augmenta-
tion with a reduced search space. arXiv:1909.13719
[cs]. arXiv: 1909.13719.
Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., and
Wei, Y. (2017). Deformable Convolutional Networks.
Number: arXiv:1703.06211 arXiv:1703.06211 [cs].
Fastai Team (2020a). aug transforms. https://docs.fast.
ai/vision.augment.html#aug transforms. Last checked
on June 6, 2022.
Fastai Team (2020b). unet learner. https://docs.fast.
ai/vision.learner.html#unet learner. Last checked on
June 6, 2022.
Howard, J. and Gugger, S. (2020). fastai: A Layered API
for Deep Learning. Information, 11(2):108. arXiv:
2002.04688.
Kassim, Y. M., Palaniappan, K., Yang, F., Poostchi, M.,
Palaniappan, N., Maude, R. J., Antani, S., and Jaeger,
S. (2021). Clustering-Based Dual Deep Learning Ar-
chitecture for Detecting Red Blood Cells in Malaria
Diagnostic Smears. IEEE J. Biomed. Health Inform.,
25(5):1735–1746.
Kimball, S. and Mattis, P. (2018). Gimp (GNU Image Ma-
nipulation Program).
Moallem, G., Sari-Sarraf, H., Poostchi, M., Maude, R. J.,
Silamut, K., Antani, S., Thoma, G., Jaeger, S., and
Amir Hossain, M. (2018). Detecting and segment-
ing overlapping red blood cells in microscopic im-
ages of thin blood smears. In Gurcan, M. N. and
Tomaszewski, J. E., editors, Medical Imaging 2018:
Digital Pathology, page 50, Houston, United States.
SPIE.
Naruenatthanaset, K., Chalidabhongse, T. H., Palasuwan,
D., Anantrasirichai, N., and Palasuwan, A. (2021).
Red Blood Cell Segmentation with Overlapping Cell
Separation and Classification on Imbalanced Dataset.
arXiv:2012.01321 [cs, eess].
OpenCV Team (2020). cv::Laplacian. https://docs.
opencv.org/4.6.0/d4/d86/group imgproc filter.
html#gad78703e4c8fe703d479c1860d76429e6. Last
checked on June 14, 2022.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., K
¨
opf, A., Yang, E., De-
Vito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).
PyTorch: An Imperative Style, High-Performance
Deep Learning Library. arXiv:1912.01703 [cs, stat].
arXiv: 1912.01703.
PyTorch Team (2020). torch.nn.CrossEntropyLoss.
https://pytorch.org/docs/stable/generated/torch.nn.
CrossEntropyLoss.html. Last checked on June 6,
2022.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net:
Convolutional Networks for Biomedical Image Seg-
mentation. arXiv:1505.04597 [cs].
Zhang, M., Li, X., Xu, M., and Li, Q. (2020). Auto-
mated Semantic Segmentation of Red Blood Cells for
Sickle Cell Disease. IEEE J. Biomed. Health Inform.,
24(11):3095–3102.