REFERENCES
Borkar, P., Pulinthitha, M., & Pansare, A. (2019). Match
Pose - A System for Comparing Poses. International
journal of engineering research and technology, Vol. 8.
https://www.ijert.org/match-pose-a-system-for-
comparing-poses.
Brachmann, E., Krull, A., Nowozin, S., Shotton, J., Michel,
F., Gumhold, S. & Rother, C. (2017). DSAC —
Differentiable RANSAC for Camera Localization.
2492-2500. https://doi.org/10.48550/arXiv.1611.05705
Chang, J., Moon, G. & Kyoung, L. (2019). AbsPoseLifter:
Absolute 3D Human Pose Lifting Network from a
Single Noisy 2D Human Pose. arXiv preprint
arXiv:1910.12029. https://doi.org/10.48550/arXiv.
1910.12029
Chen W., Jiang Z., Guo H. & Ni X. (2020). Fall Detection
Based on Key Points of Human-Skeleton Using
OpenPose. Symmetry. 12(5):744. https://doi.org/
10.3390/sym12050744
Chen, X., Zhou, Z., Ying, Y., & Qi, D. (2019). Real-time
Human Segmentation using Pose Skeleton Map. In:
Chinese Control Conference, pp.8472-8477.
https://dx.doi.org/10.23919/ChiCC.2019.8865151
Chen, Y., Shen, C., Wei, X., Liu, L. & Yang, J. (2017).
Adversarial Posenet: A Structure-Aware Convolutional
Network for Human Pose Estimation, IEEE
International Conference on Computer Vision, 1221-
1230. https://dx.doi.org/10.1109/ICCV.2017.137
Cao, Z., Simon, T., Wei, S. & Sheikh, Y. (2016). Realtime
multi-person 2d pose estimation using part affinity
fields. arXiv:1611.08050. https://doi.org/10.48550/
arXiv.1611.08050
Delaware, U. (2022, July 20). Delaware Physical Therapy
Clinic - Assesses functional lower extremity strength,
transitional movements, balance, and fall risk.
https://cpb-us-w2.wpmucdn.com/sites.udel.edu/dist
/c/3448/files/2017/08/Functional-Tests-Normative-
Data-Aug-9-2017-18kivvp.pdf
Gruselhaus, G. (2022, July 20). Github Repopsitory
implementation of Posenet with Tensorflow and
ML5.js. https://github.com/CodingTrain/website/tree/
main/learning/ml5
Halilaj, E., Rajagopal, A., Fiterau, M., Hicks, J., Hastie, T.
& Delp, S. (2018). Machine learning in human
movement biomechanics: Best practices, common
pitfalls, and new opportunities. Journal of
Biomechanics, Vol. 81, 1-11. https://doi.org/10.1016/
j.jbiomech.2018.09.009.
Liu, L., Ouyang, W., Wang, X. Fieguth, P., Chen, J., Liu,
X. & Pietikäinen, M. (2020). Deep Learning for
Generic Object Detection: A Survey. Int J Comput Vis
128, 261–318. https://doi.org/10.1007/s11263-019-
01247-4
Lo, S., Hang, H., Chan, S. & Lin, J. (2019). Efficient Dense
Modules of Asymmetric Convolution for Real-Time
Semantic Segmentation. Proceedings of the ACM
Multimedia Asia. https://doi.org/10.48550/arXiv.
1809.06323
Marques, E. A., Baptista, F., Santos, R., Vale, S., Santos,
D. A., Silva, A. M., Mota, J. & Sardinha, L. (2014).
Normative Functional Fitness Standards and Trends of
Portuguese Older Adults: Cross-Cultural Comparisons,
Journal of Aging and Physical Activity, 22(1), 126-137.
Mediapipe, D. (2022, July 20). Media Pipe Framework for
live and streaming media in mobile devices. Version
Bazelversion 5.2.0. https://mediapipe.dev
Menolotto, M., Komaris, D., Tedesco, S., O'Flynn, B. &
Walsh, M. (2020). Motion Capture Technology in
Industrial Applications: A Systematic Review. Sensors,
20(19),5687. https://doi.org/10.3390/s20195687
Oved, D. (2022, July 20). Implementation of Real-time
Human Pose Estimation in the Browser with
TensorFlow.js. https://blog.tensorflow.org/2018/05/
real-time-human-pose-estimation-in.html
Posenet, M. (2022, July 20). Machine Learning Framework
with Posenet Implementation - ML5.js.
https://ml5js.org/
Ramirez, H., Velastin, S., Meza, I., Fabregas, E., Makris D.,
Farias, G. (2021). Fall Detection and Activity
Recognition Using Human Skeleton Features. In IEEE
Access, Vol. 9, 33532-33542. Available on:
https://dx.doi.org/10.1109/ACCESS.2021.3061626
Renotte, N. (2022, July 20). Github Repository of Real
Time Posenet implementation. https://github.com/
nicknochnack/PosenetRealtime
Safarzadeh, M., Alborzi, Y. & Ardekany, A. (2019). Real-
time Fall Detection and Alert System Using Pose
Estimation, 2019 7th International Conference on
Robotics and Mechatronics, 508-511. https://dx.doi.org
/10.1109/ICRoM48714.2019.9071856
Shavit, Y., & Ferens, R. (2019). Introduction to camera
pose estimation with deep learning. arXiv preprint
arXiv:1907.05272. https://doi.org/10.48550/arXiv.
1907.05272
Vila-Chã, C. & Vaz, C. (2019). Guia de Atividade Física
para Maiores de 65 anos. GMOVE Project- intervention
program to promote physical activity and quality of life
for the elderly population. https://www.researchgate.
net/publication/338281960_Guia_de_Atividade_Fisica
_para_Maiores_de_65_anos
Wang, X. (2016), Deep Learning in Object Recognition,
Detection, and Segmentation, Foundations and Trends
in Signal Processing: Vol. 8: No. 4, 217-382.
http://dx.doi.org/10.1561/2000000071
Wang, K., Lin, L., Jiang, C., Qian, C., & Wei, P. (2020). 3D
Human Pose Machines with Self-Supervised Learning.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 42,1069-1082. https://doi.org/10.48550/
arXiv.1901.03798
Zago, M., Kleiner, A., & Federolf, P. (2021). Machine
Learning Approaches to Human Movement Analysis.
Frontiers in bioengineering and biotechnology, 8:1573.
https://doi.org/10.3389/fbioe.2020.638793