REFERENCES
Ahmed, F., Bari, A. H., and Gavrilova, M. L. (2019). Emo-
tion recognition from body movement. IEEE Access,
8:11761–11781.
Bersak, D., McDarby, G., Augenblick, N., McDarby,
P., McDonnell, D., McDonald, B., and Karkun, R.
(2001). Intelligent biofeedback using an immersive
competitive environment. In Paper at the designing
ubiquitous computing games workshop at UbiComp,
pages 1–6. Citeseer.
Bishop, C. M. (2006). Pattern Recognition and Ma-
chine Learning (Information Science and Statistics).
Springer-Verlag New York, Inc., Secaucus, NJ, USA.
Boccignone, G., Conte, D., Cuculo, V., and Lanzarotti, R.
(2017). Amhuse: a multimodal dataset for humour
sensing. In Proceedings of the 19th ACM Interna-
tional Conference on Multimodal Interaction, pages
438–445.
Bradley, M. M. and Lang, P. J. (1994). Measuring emotion:
the self-assessment manikin and the semantic differ-
ential. Journal of behavior therapy and experimental
psychiatry, 25(1):49–59.
Burkhart, M. C., Brandman, D. M., Franco, B., Hochberg,
L. R., and Harrison, M. T. (2020). The discrimina-
tive kalman filter for bayesian filtering with nonlinear
and nongaussian observation models. Neural compu-
tation, 32(5):969–1017.
Cohen, S., Kamarck, T., and Mermelstein, R. (1983). A
global measure of perceived stress. Journal of health
and social behavior, pages 385–396.
Colder Carras, M., Van Rooij, A. J., Spruijt-Metz, D.,
Kvedar, J., Griffiths, M. D., Carabas, Y., and Labrique,
A. (2018). Commercial video games as therapy:
A new research agenda to unlock the potential of a
global pastime. Frontiers in psychiatry, 8:300.
Csikszentmihalyi, M. and Csikzentmihaly, M. (1990).
Flow: The psychology of optimal experience, volume
1990. Harper & Row New York.
Frommel, J., Schrader, C., and Weber, M. (2018). Towards
emotion-based adaptive games: Emotion recognition
via input and performance features. In Proceedings
of the 2018 Annual Symposium on Computer-Human
Interaction in Play, pages 173–185.
Fullerton, T. (2014). Game design workshop: a playcentric
approach to creating innovative games. CRC press.
Girin, L., Leglaive, S., Bie, X., Diard, J., Hueber, T., and
Alameda-Pineda, X. (2021). Dynamical variational
autoencoders: A comprehensive review. Foundations
and Trends in Machine Learning, 15(1-2):1–175.
Herbold, S. (2020). Autorank: A python package for auto-
mated ranking of classifiers. Journal of Open Source
Software, 5(48):2173.
Higgins, E. T. (1989). Self-discrepancy theory: What pat-
terns of self-beliefs cause people to suffer? In Ad-
vances in experimental social psychology, volume 22,
pages 93–136. Elsevier.
Karg, M., Samadani, A.-A., Gorbet, R., K
¨
uhnlenz, K.,
Hoey, J., and Kuli
´
c, D. (2013). Body movements for
affective expression: A survey of automatic recogni-
tion and generation. IEEE Transactions on Affective
Computing, 4(4):341–359.
Kleinsmith, A. and Bianchi-Berthouze, N. (2012). Affec-
tive body expression perception and recognition: A
survey. IEEE Transactions on Affective Computing,
4(1):15–33.
Lazarus, R. S. (1993). From psychological stress to the
emotions: A history of changing outlooks. Annual
review of psychology, 44(1):1–22.
Lebois, L. A., Hertzog, C., Slavich, G. M., Barrett, L. F.,
and Barsalou, L. W. (2016). Establishing the situated
features associated with perceived stress. Acta Psy-
chologica, 169:119–132.
Maarsingh, B. M., Bos, J., Van Tuijn, C. F., and Renard,
S. B. (2019). Changing stress mindset through stress-
jam: a virtual reality game using biofeedback. Games
for health journal, 8(5):326–331.
Mar
´
ın-Morales, J., Llinares, C., Guixeres, J., and Alca
˜
niz,
M. (2020). Emotion recognition in immersive virtual
reality: From statistics to affective computing. Sen-
sors, 20(18):5163.
Mishra, P. and Ratnaparkhi, S. (2018). Hmm based emotion
detection in games. In 2018 3rd International Con-
ference for Convergence in Technology (I2CT), pages
1–4. IEEE.
Pallavicini, F., Ferrari, A., and Mantovani, F. (2018a).
Video games for well-being: A systematic review on
the application of computer games for cognitive and
emotional training in the adult population. Frontiers
in psychology, 9:2127.
Pallavicini, F., Ferrari, A., Pepe, A., Garcea, G., Zanacchi,
A., and Mantovani, F. (2018b). Effectiveness of vir-
tual reality survival horror games for the emotional
elicitation: Preliminary insights using resident evil 7:
Biohazard. In International Conference on Universal
Access in Human-Computer Interaction, pages 87–
101. Springer.
Pallavicini, F., Pepe, A., Mantovani, F., et al. (2021). Com-
mercial off-the-shelf video games for reducing stress
and anxiety: systematic review. JMIR mental health,
8(8):e28150.
Savitzky, A. and Golay, M. J. (1964). Smoothing and dif-
ferentiation of data by simplified least squares proce-
dures. Analytical chemistry, 36(8):1627–1639.
Schell, J. (2008). The Art of Game Design: A book of lenses.
CRC press.
Sykes, J. and Brown, S. (2003). Affective gaming: mea-
suring emotion through the gamepad. In CHI’03 ex-
tended abstracts on Human factors in computing sys-
tems, pages 732–733.
Vachiratamporn, V., Legaspi, R., Moriyama, K., and Nu-
mao, M. (2013). Towards the design of affective sur-
vival horror games: An investigation on player af-
fect. In 2013 Humaine Association Conference on Af-
fective Computing and Intelligent Interaction, pages
576–581. IEEE.
Yannakakis, G. N. and Togelius, J. (2018). Artificial intelli-
gence and games, volume 2. Springer.
Between the Buttons: Stress Assessment in Video Games using Players’ Behavioural Data
69