Table 6: Results of the meta-optimization and search performance evaluation measured by the number of fitness evaluations
(FE) to termination.
Parametrization Search Performance Evaluation
Problem Algorithm N λ M
p
[%] M
d
[%] D
d
M
i
[%] D
i
MFE SD 1Q 2Q 3Q p
Adder 2-Bit
(1 + λ)-CGP 3000 1 0.7 – – – – 42, 374 34, 431 22, 027 32, 662 50, 467 –
F
(1 + λ)-CGP-DP 3000 1 0.7 6.0 1 – – 36, 486 32, 141 17, 988 24, 167 45, 308 0.055446
(1 + λ)-CGP-IN 3000 1 0.7 – – 1.0 4 34, 754 23, 080 17, 332 26, 887 45, 691 0.083862
(1 + λ)-CGP-DP/IN 3000 1 0.6 5.0 1 1.0 2 31, 936
†
22, 104 16, 487 25, 255 43, 152 0.012563
Adder 3-Bit
(1 + λ)-CGP 5000 1 0.4 – – – – 200, 105 171, 364 106, 580 166, 913 237, 775 –
F
(1 + λ)-CGP-DP 5000 1 0.3 2.0 2 – – 164, 538
‡
131, 222 85, 697 134,631 183, 214 0.008644
(1 + λ)-CGP-IN 5000 1 0.3 – – 1.5 2 162, 874
†
110, 705 88, 534 145,333 196, 542 0.029721
(1 + λ)-CGP-DP/IN 5000 1 0.3 1.0 2 1.0 2 185, 788 163,019 98, 416 123, 169 210,512 0.109352
Adder 4-Bit
(1 + λ)-CGP 7000 1 0.3 – – – – 604, 729 471, 852 304, 067 473, 451 712, 748 –
F
(1 + λ)-CGP-DP 7000 1 0.3 5.0 1 – – 497, 716 298,933 334, 116 427,474 587, 760 0.330959
(1 + λ)-CGP-IN 7000 1 0.3 – – 4.0 1 459, 533
†
268, 773 288,186 374, 961 529,789 0.011349
(1 + λ)-CGP-DP/IN 7000 1 0.2 3.0 1 2.0 1 443, 801
†
292, 051 264,351 397, 726 545,033 0.035739
Subtractor 2-Bit
(1 + λ)-CGP 5000 1 0.6 – – – – 13,419 15, 619 5, 218 8, 995 15, 537 –
F
(1 + λ)-CGP-DP 5000 1 0.6 4.0 2 – – 9, 225
†
8, 218 3,967 6, 463 11, 093 0.010669
(1 + λ)-CGP-IN 5000 1 0.6 – – 7.0 2 10, 317
†
12, 996 4,395 6, 891 10, 617 0.024581
(1 + λ)-CGP-DP/IN 5000 1 0.6 4.0 2 1.0 2 10,477 10, 515 4, 451 6, 742 13, 262 0.069644
Adder/Subtr. 3-Bit
(1 + λ)-CGP 8500 1 0.3 – – – – 531,908 484, 390 300,633 422, 432 642,574 –
F
(1 + λ)-CGP-DP 8500 1 0.3 2.0 3 – – 452, 955 318,305 261, 270 359,154 526, 787 0.104550
(1 + λ)-CGP-IN 8500 1 0.3 – – 3.0 1 445, 812
†
303, 317 252,506 331, 591 507,720 0.044557
(1 + λ)-CGP-DP/IN 8500 1 0.3 2.0 1 3.0 1 444, 694 289,646 262, 952 346,882 519, 647 0.077479
Multiplier 2-Bit
(1 + λ)-CGP 4000 1 0.8 – – – – 8, 421 11, 306 3,945 5, 705 8, 814 –
F
(1 + λ)-CGP-DP 4000 1 0.8 10.0 1 – – 5, 224
‡
4, 598 2,825 4, 062 6, 241 0.000245
(1 + λ)-CGP-IN 4000 1 0.8 – – 10.0 2 5, 689
‡
5, 427 3, 027 4, 215 7, 025 0.005012
(1 + λ)-CGP-DP/IN 4000 1 0.8 10.0 1 2.0 1 5, 702
‡
4, 291 3, 004 4, 365 6, 662 0.007626
Multiplier 3-Bit
(1 + λ)-CGP 4000 1 0.3 – – – – 439,106 337, 382 229,458 317, 891 524,669 –
F
(1 + λ)-CGP-DP 4000 1 0.3 2.0 2 – – 346, 124
†
269, 190 193,182 282, 044 411,654 0.046687
(1 + λ)-CGP-IN 4000 1 0.3 – – 2.0 6 355, 625
†
240, 759 183,936 268, 791 470,502 0.023817
(1 + λ)-CGP-DP/IN 4000 1 0.3 2.0 2 1.0 5 361, 491 250,027 182, 755 293,246 462, 317 0.068831
Multiplier 4-Bit
(1 + λ)-CGP 8000 1 0.2 – – – – 89, 808, 385 19, 687, 510 89, 674, 939 100, 000,000 100, 000,000 –
F
⊕
(1 + λ)-CGP-DP 8000 1 0.2 2.0 1 – – 79, 153,688 25, 084, 937 65, 564, 659 94, 344, 994 100, 000, 000 0.078953
(1 + λ)-CGP-IN 8000 1 0.2 – – 1.0 2 86, 687,228 21, 810, 528 73, 410, 982 100, 000, 000 100, 000, 000 0.654324
(1 + λ)-CGP-DP/IN 8000 1 0.2 1.0 1 1.0 2 93, 499, 390 14, 98, 9673 100, 000, 000 100, 000,000 100, 000, 000 0.273819
DeMUX-1x8
(1 + λ)-CGP 5000 1 0.8 – – – – 30, 256 24, 829 16, 883 23, 553 34, 433 –
F
(1 + λ)-CGP-DP 5000 1 0.8 7.0 1 – – 19, 771
‡
11, 579 12, 074 17, 096 24, 473 0.000035
(1 + λ)-CGP-IN 5000 1 0.8 – – 7.0 3 21, 450
‡
13, 073 11, 914 18, 403 28, 081 0.001019
(1 + λ)-CGP-DP/IN 5000 1 0.8 5.0 2 5.0 3 20, 620
‡
12, 323 11, 974 18, 509 26, 172 0.000215
DeMUX-1x16
(1 + λ)-CGP 7000 1 0.5 – – – – 340,256 275, 806 159,293 252, 965 398,391 –
F
(1 + λ)-CGP-DP 7000 1 0.4 5.0 2 – – 273, 724
†
254, 154 116,691 186, 227 301,180 0.011269
(1 + λ)-CGP-IN 7000 1 0.4 – – 5.0 3 292, 079
†
265, 562 127,363 190, 456 366,133 0.047783
(1 + λ)-CGP-DP/IN 7000 1 0.4 5.0 3 1.0 3 259, 061
†
221, 916 131,296 193, 867 268,625 0.016808
Comparator 3x1-Bit
(1 + λ)-CGP 4000 1 0.6 – – – – 14, 734 11, 795 8,161 11, 005 18, 287 –
F
(1 + λ)-CGP-DP 4000 1 0.6 5.0 2 – – 10, 978
†
5, 011 7,043 9, 951 13, 796 0.049184
(1 + λ)-CGP-IN 4000 1 0.6 – – 3.0 2 11, 972
†
9, 196 6,369 10, 121 14, 628 0.044077
(1 + λ)-CGP-DP/IN 4000 1 0.6 1.0 2 1.0 2 11, 473
†
6, 194 6,908 9, 927 14, 541 0.027272
Comparator 4x1-Bit
(1 + λ)-CGP 6000 1 0.3 – – – – 80, 023 52, 598 49, 100 62, 841 89, 968 –
F
(1 + λ)-CGP-DP 6000 1 0.2 10.0 1 – – 64, 644
‡
45, 639 39, 321 55, 533 72, 831 0.008154
(1 + λ)-CGP-IN 6000 1 0.2 – – 7.0 4 68, 833
†
46, 017 39, 318 55, 320 86, 806 0.030281
(1 + λ)-CGP-DP/IN 6000 1 0.2 5.0 1 5.0 1 69, 710
‡
61, 338 37, 470 49, 211 71, 161 0.001747
Parity-Even 8-Bit
(1 + λ)-CGP 4000 1 0.5 – – – – 523,844 374, 044 289,856 419, 590 643,732 –
F
(1 + λ)-CGP-DP 4000 1 0.5 6.0 2 – – 438, 525
†
317, 747 233,748 362, 426 520,079 0.037735
(1 + λ)-CGP-IN 4000 1 0.5 – – 7.0 3 448, 418
†
371, 781 209,428 311, 644 591,727 0.019721
(1 + λ)-CGP-DP/IN 4000 1 0.5 4.0 2 3.0 3 474, 863 389,481 226, 027 362,221 577, 683 0.080760
Parity-Even 9-Bit
(1 + λ)-CGP 7000 1 0.3 – – – – 2, 706,718 2, 798, 332 1, 200, 713 1,803, 237 3, 367, 452 –
F
(1 + λ)-CGP-DP 7000 1 0.3 5.0 1 – – 2, 132, 412
†
2, 175,003 923, 679 1, 562,207 2,213, 686 0.018214
(1 + λ)-CGP-IN 7000 1 0.3 – – 2.0 3 2, 104, 790 1, 993,138 1, 006, 380 1, 532,286 2,390, 220 0.066980
(1 + λ)-CGP-DP/IN 7000 1 0.3 2.0 1 2.0 3 2, 226, 970
‡
2, 711,787 911, 135 1, 299,457 2,362, 052 0.007688
ALU 2-Bit
(1 + λ)-CGP 6000 1 0.3 – – – – 294,587 332, 068 126,606 192, 664 310,028 –
F
(1 + λ)-CGP-DP 6000 1 0.3 5.0 1 – – 233, 504 233,898 110, 430 159,325 264, 168 0.186220
(1 + λ)-CGP-IN 6000 1 0.3 – – 6.0 1 199, 940
†
154, 555 105,093 155, 823 237,044 0.031428
(1 + λ)-CGP-DP/IN 6000 1 0.3 4.0 1 2.0 1 236, 254 259,743 98, 382 171, 243 253,019 0.090671
ALU 3-Bit
(1 + λ)-CGP 8000 1 0.1 – – – – 1, 627,394 1, 743, 657 835,674 1,270, 141 1, 773,802 –
F
(1 + λ)-CGP-DP 8000 1 0.1 0.5 1 – – 1, 540, 866 1, 775,480 763, 535 1, 009,074 1,606, 575 0.121230
(1 + λ)-CGP-IN 8000 1 0.1 – – 0.6 1 1, 361, 882
†
1, 143,206 671, 365 1, 024,026 1,667, 233 0.048339
(1 + λ)-CGP-DP/IN 8000 1 0.1 0.2 1 0.2 1 1, 498, 320 1, 3224,62 753, 759 1, 160,890 1, 694, 086 0.368704
tion nodes after the backward search. However, run-
time studies are needed in the future to make more
significant statements.
8 CONCLUSIONS AND FUTURE
WORK
This work presented initial results of phenotypic du-
plication and inversion in CGP. The effectiveness of
these methods has been evaluated on a diverse set
of Boolean functions problems, covering single and
ECTA 2022 - 14th International Conference on Evolutionary Computation Theory and Applications
58