plex process that will require multiple knowledge.
The instantiations of the ontology will provide one
part of the uniform description of the devices. The
second part of this description will consider the us-
ability of devices. Usability is the effectiveness, effi-
ciency, and satisfaction with which the user achieves
his or her goals using the digital device (Mustafa and
Al-Zoua’bi, 2008). Usability data will collect using a
questionnaire.
Thanks to this ontology-based characterization and
usability data, which will provide a uniform descrip-
tion of the devices, will allow us to calculate the simi-
larity between different digital devices. The similarity
calculation will be used when predicting the impact.
The similarity measure will be used in a case-based
reasoning algorithm by calculating the similarity be-
tween the device whose impact is to be predicted and
devices whose impact is known. Each device will be
represented by a uniform description which is an in-
stantiation of the ontology and usability dataset and
by an impact value. The case-based reasoning will al-
low for expanding a knowledge base (i.e. the set of
pairs (ontology instantiation and usability data, im-
pact)). This knowledge base enrichment will be of
interest in our problem because we will have a small
amount of impact data initially and it will increase the
quality of impact prediction for new digital devices.
REFERENCES
Bacha, F., Oliveira, K., and Abed, M. (2010). Foundations
of a model driven engineering approach for human-
computer interface focused on content personaliza-
tion. IFAC Proceedings Volumes, 43(13):494–499.
Bennani, S., Maalel, A., and Ghezala, H. B. (2020). Age-
learn: Ontology-based representation of personalized
gamification in e-learning. Procedia Computer Sci-
ence, 176:1005–1014.
Bourdeau, J., Mizoguchi, R., Hayashi, Y., Psych
´
e, V., and
Nkambou, R. (2007). When the Domain of the Ontol-
ogy is Education. PhD thesis.
Caldwell, B., Cooper, M., Reid, L. G., Vanderheiden, G.,
Chisholm, W., Slatin, J., and White, J. (2008). Web
content accessibility guidelines (wcag) 2.0. WWW
Consortium (W3C), 290:1–34.
Cristani, M. and Cuel, R. (2005). A survey on ontol-
ogy creation methodologies. International Journal
on Semantic Web and Information Systems (IJSWIS),
1(2):49–69.
Delestre, N., Bourda, Y., Le Gall, E., de Regil, R.-
M. G., Colmant, Y., Peterlongo, M., and Verrier, R.
(2019). Nodefr-1: M
´
etadonn
´
ees p
´
edagogiques et web
des donn
´
ees. In Environnements Informatiques pour
l’Apprentissage Humain.
Durand, M.-J., Loye, N., Stasse, S., and Dupuis, M.-
`
E. (2015). Dispositif de formation num
´
erique au
1er et 2e cycle universitaire: structuration, outils
d’
´
evaluation et perception des
´
etudiants. Bienvenue
au 21e si
`
ecle.
´
Evaluation des apprentissages et tech-
nologies de l’information et de communication, pages
113–150.
Gandon, F. (2002). Distributed Artificial Intelligence and
Knowledge Management: ontologies and multi-agent
systems for a corporate semantic web. PhD thesis,
Universit
´
e Nice Sophia Antipolis.
Gribouval, M., Monticolo, D., Zanni-Merk, C., and Sydor-
Vienne, D. (2021). Assessment methods to ict plat-
form used in educational guidance: Application to an
immersive world. In Ireland International Conference
on Education.
Gruber, T. R. (1993). A translation approach to portable
ontology specifications. Knowledge acquisition,
5(2):199–220.
Guinebert, M., Yessad, A., Muratet, M., and Luengo, V.
(2017). An ontology for describing scenarios of multi-
players learning games: toward an automatic detec-
tion of group interactions. In European Conference
on Technology Enhanced Learning, pages 410–415.
Springer.
Lam, P. and Tong, A. (2012). Digital devices in classroom–
hesitations of teachers-to-be. Electronic Journal of e-
Learning, 10(4):pp387–395.
Mizoguchi, R. and Bourdeau, J. (2016). Using ontological
engineering to overcome ai-ed problems: Contribu-
tion, impact and perspectives. International Journal
of Artificial Intelligence in Education, 26(1):91–106.
Mustafa, S. H. and Al-Zoua’bi, L. F. (2008). Usability of
the academic websites of jordan’s universities an eval-
uation study. In Proceedings of the 9th International
Arab Conference for Information Technology, pages
31–40.
Noy, N. F., McGuinness, D. L., et al. (2001). Ontology
development 101: A guide to creating your first ontol-
ogy.
Peroni, S. (2016). A simplified agile methodology
for ontology development. In OWL: Experiences
and directions–reasoner evaluation, pages 55–69.
Springer.
Poveda-Villal
´
on, M., G
´
omez-P
´
erez, A., and Su
´
arez-
Figueroa, M. C. (2014). Oops!(ontology pitfall scan-
ner!): An on-line tool for ontology evaluation. In-
ternational Journal on Semantic Web and Information
Systems (IJSWIS), 10(2):7–34.
Tiwana, A., Konsynski, B., and Bush, A. A. (2010). Re-
search commentary—platform evolution: Coevolu-
tion of platform architecture, governance, and envi-
ronmental dynamics. Information systems research,
21(4):675–687.
Treleani, M. (2014). Dispositifs num
´
eriques: r
´
egimes
d’interaction et de croyance. Actes s
´
emiotiques, 117.
Viloria, A., Lezama, O. B. P., and Mercado-Caruzo, N.
(2020). Factors that describe the use of digital devices
in latin american universities. Procedia computer sci-
ence, 175:127–134.
KEOD 2022 - 14th International Conference on Knowledge Engineering and Ontology Development
206