(Eds.), Computational Science – ICCS 2022 (Vol.
13352, pp. 484–496). Springer International
Publishing. https://doi.org/10.1007/978-3-031-08757-
8_41
Aranha, C., Camacho Villalón, C. L., Campelo, F., Dorigo,
M., Ruiz, R., Sevaux, M., Sörensen, K., & Stützle, T.
(2021). Metaphor-based metaheuristics, a call for
action: The elephant in the room. Swarm Intelligence.
https://doi.org/10.1007/s11721-021-00202-9
Birattari, M., Paquete, L., & Stützle, T. (2003).
Classification of Metaheuristics and Design of
Experiments for the Analysis of Components.
Camacho‐Villalón, C. L., Dorigo, M., & Stützle, T. (2022).
Exposing the grey wolf, moth‐flame, whale, firefly, bat,
and antlion algorithms: Six misleading optimization
techniques inspired by bestial metaphors. International
Transactions in Operational Research, itor.13176.
https://doi.org/10.1111/itor.13176
Campelo, F., & Aranha, C. (2021). Sharks, Zombies and
Volleyball: Lessons from the Evolutionary
Computation Bestiary. Proceedings of the LIFELIKE
Computing Systems Workshop 2021, 3007.
Cruz-Duarte, J. M., Ortiz-Bayliss, J. C., Amaya, I., Shi, Y.,
Terashima-Marín, H., & Pillay, N. (2020). Towards a
Generalised Metaheuristic Model for Continuous
Optimisation Problems. Mathematics, 8(11), 2046.
https://doi.org/10.3390/math8112046
de Armas, J., Lalla-Ruiz, E., Tilahun, S. L., & Voß, S.
(2021). Similarity in metaheuristics: A gentle step
towards a comparison methodology. Natural
Computing. https://doi.org/10.1007/s11047-020-
09837-9
Fister jr, I., Mlakar, U., Brest, J., & Fister, I. (2016,
October). A new population-based nature-inspired
algorithm every month: Is the current era coming to the
end?
Glover, F. (1986). Future paths for integer programming
and links to artificial intelligence. Computers &
Operations Research, 13(5), 533–549.
https://doi.org/10.1016/0305-0548(86)90048-1
Hooker, J. N. (1995). Testing heuristics: We have it all
wrong. Journal of Heuristics, 1(1), 33–42.
https://doi.org/10.1007/BF02430364
Liu, B., Wang, L., Liu, Y., & Wang, S. (2011). A unified
framework for population-based metaheuristics. Annals
of Operations Research, 186(1), 231–262.
https://doi.org/10.1007/s10479-011-0894-3
Lones, M. A. (2020). Mitigating Metaphors: A
Comprehensible Guide to Recent Nature-Inspired
Algorithms. SN Computer Science, 1(1), 49.
https://doi.org/10.1007/s42979-019-0050-8
Molina, D., Poyatos, J., Ser, J. D., García, S., Hussain, A.,
& Herrera, F. (2020). Comprehensive Taxonomies of
Nature- and Bio-inspired Optimization: Inspiration
Versus Algorithmic Behavior, Critical Analysis
Recommendations. Cognitive Computation, 12(5),
897–939. https://doi.org/10.1007/s12559-020-09730-8
Ostrowski, D., & Schleis, G. (2008). New Approaches for
MetaHeuristic Frameworks: A Position Paper. AAAI
Workshop - Technical Report.
Peres, F., & Castelli, M. (2021). Combinatorial
Optimization Problems and Metaheuristics: Review,
Challenges, Design, and Development. Applied
Sciences, 11(14), 6449.
https://doi.org/10.3390/app11146449
Sörensen, K. (2015). Metaheuristics-the metaphor exposed.
International Transactions in Operational Research,
22(1), 3–18. https://doi.org/10.1111/itor.12001
Sörensen, K., & Glover, F. W. (2013). Metaheuristics. In S.
I. Gass & M. C. Fu (Eds.), Encyclopedia of Operations
Research and Management Science (pp. 960–970).
Springer US. https://doi.org/10.1007/978-1-4419-
1153-7_1167
Stegherr, H., Heider, M., & Hähner, J. (2020). Classifying
Metaheuristics: Towards a unified multi-level
classification system. Natural Computing.
https://doi.org/10.1007/s11047-020-09824-0
Swan, J., Adriaensen, S., Bishr, M., Burke, E. K., Clark, J.
A., Durillo, J. J., Hammond, K., Hart, E., Johnson, C.
G., Kocsis, Z. A., Kovitz, B., Krawiec, K., Martin, S.,
Merelo, J. J., Minku, L. L., Pappa, G. L., Pesch, E.,
Garc, P., Schaerf, A., … Wagner, S. (2015). A Research
Agenda for Metaheuristic Standardization.
Torres-Jiménez, J., & Pavón, J. (2014). Applications of
metaheuristics in real-life problems. Progress in
Artificial Intelligence, 2(4), 175–176.
https://doi.org/10.1007/s13748-014-0051-8
Tzanetos, A., & Dounias, G. (2021). Nature inspired
optimization algorithms or simply variations of
metaheuristics? Artificial Intelligence Review, 54(3),
1841–1862. https://doi.org/10.1007/s10462-020-
09893-8
Ven, A., & Johnson, P. (2006). Knowledge for Theory and
Practice. Academy of Management Review, 31, 802–
821. https://doi.org/10.2307/20159252
Voß, S. (2001). Meta-heuristics: The State of the Art. In G.
Goos, J. Hartmanis, J. van Leeuwen, & A. Nareyek
(Eds.), Local Search for Planning and Scheduling (Vol.
2148, pp. 1–23). Springer Berlin Heidelberg.
https://doi.org/10.1007/3-540-45612-0-1
Wang, Y. (2010). A Sociopsychological Perspective on
Collective Intelligence in Metaheuristic Computing:
International Journal of Applied Metaheuristic
Computing, 1(1), 110–128.
https://doi.org/10.4018/jamc.2010102606
Wolpert, D. H., & Macready, W. G. (1997). No free lunch
theorems for optimization. IEEE Transactions on
Evolutionary Computation, 1(1), 67–82.
https://doi.org/10.1109/4235.585893
Yang, X.-S. (2020). Nature-inspired optimization
algorithms (2nd ed.). Elsevier Inc.