the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Jahangeer, G. S. B. and Rajkumar, T. D. (2021). Early
detection of breast cancer using hybrid of series net-
work and vgg-16. Multimedia Tools and Applications,
80(5):7853–7886.
Jiang, Y., Chen, L., Zhang, H., and Xiao, X. (2019).
Breast cancer histopathological image classification
using convolutional neural networks with small se-
resnet module. PloS one, 14(3):e0214587.
Kim, H. E., Cosa-Linan, A., Santhanam, N., Jannesari, M.,
Maros, M. E., and Ganslandt, T. (2022). Transfer
learning for medical image classification: a literature
review. BMC medical imaging, 22(1):1–13.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. Advances in neural information processing
systems, 25.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learn-
ing. nature, 521(7553):436–444.
Li, X., Wang, Y., Zhao, Y., and Wei, Y. (2022). Fast speckle
noise suppression algorithm in breast ultrasound im-
age using three-dimensional deep learning. Frontiers
in Physiology, page 698.
Ling, C. X. and Li, C. (1998). Data mining for direct mar-
keting: Problems and solutions. In Kdd, volume 98,
pages 73–79.
Liu, S., Wang, Y., Yang, X., Lei, B., Liu, L., Li, S. X., Ni,
D., and Wang, T. (2019). Deep learning in medical
ultrasound analysis: a review. Engineering, 5(2):261–
275.
Masud, M., Hossain, M. S., Alhumyani, H., Alshamrani,
S. S., Cheikhrouhou, O., Ibrahim, S., Muhammad, G.,
Rashed, A. E. E., and Gupta, B. (2021). Pre-trained
convolutional neural networks for breast cancer de-
tection using ultrasound images. ACM Transactions
on Internet Technology (TOIT), 21(4):1–17.
Moon, W. K., Lee, Y.-W., Ke, H.-H., Lee, S. H., Huang, C.-
S., and Chang, R.-F. (2020). Computer-aided diagno-
sis of breast ultrasound images using ensemble learn-
ing from convolutional neural networks. Computer
methods and programs in biomedicine, 190:105361.
Nawaz, W., Ahmed, S., Tahir, A., and Khan, H. A. (2018).
Classification of breast cancer histology images using
alexnet. In International conference image analysis
and recognition, pages 869–876. Springer.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., et al. (2015). Imagenet large scale visual
recognition challenge. International journal of com-
puter vision, 115(3):211–252.
Sarvamangala, D. and Kulkarni, R. V. (2021). Convolu-
tional neural networks in medical image understand-
ing: a survey. Evolutionary intelligence, pages 1–22.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Taha, A. A. and Hanbury, A. (2015). Metrics for evaluating
3d medical image segmentation: analysis, selection,
and tool. BMC medical imaging, 15(1):1–28.
Virmani, J., Agarwal, R., et al. (2019). Assessment of de-
speckle filtering algorithms for segmentation of breast
tumours from ultrasound images. Biocybernetics and
Biomedical Engineering, 39(1):100–121.
Virmani, J., Agarwal, R., et al. (2020). Deep feature ex-
traction and classification of breast ultrasound images.
Multimedia Tools and Applications, 79(37):27257–
27292.
Wang, Y., Ge, X., Ma, H., Qi, S., Zhang, G., and Yao, Y.
(2021). Deep learning in medical ultrasound image
analysis: a review. IEEE Access, 9:54310–54324.
Yap, M. H., Goyal, M., Osman, F., Mart
´
ı, R., Denton, E.,
Juette, A., and Zwiggelaar, R. (2020). Breast ultra-
sound region of interest detection and lesion localisa-
tion. Artificial Intelligence in Medicine, 107:101880.
Yu, X., Kang, C., Guttery, D. S., Kadry, S., Chen, Y., and
Zhang, Y.-D. (2020). Resnet-scda-50 for breast ab-
normality classification. IEEE/ACM transactions on
computational biology and bioinformatics, 18(1):94–
102.
Yuan, L., Chen, D., Chen, Y.-L., Codella, N., Dai, X., Gao,
J., Hu, H., Huang, X., Li, B., Li, C., et al. (2021). Flo-
rence: A new foundation model for computer vision.
arXiv preprint arXiv:2111.11432.
KDIR 2022 - 14th International Conference on Knowledge Discovery and Information Retrieval
94