Computing,15(1). https://doi.org/10.1287/ijoc.15.1.23
.151 58
Lee, E. K., Li, Z., Wang, Y., Hagen, M. S., Davis, R., &
Egan, B. M. (2021). Multi-Site Best Practice
Discovery: From Free Text to Standardized Concepts to
Clinical Decisions. 2021 IEEE International
Conference on Bioinformatics and Biomedicine
(BIBM), 2766–2773. https://doi.org/10.1109/BIBM52
615.2021.9669414
Lee, E. K., Wang, Y., Hagen, M. S., Wei, X., Davis, R. A.,
& Egan, B. M. (2016). Machine learning: multi-site
evidence-based best practice discovery. Lecture Notes
in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 10122 LNCS. https://doi.org/10.1
007/978-3-319-51469-7_1
Lee, E. K., Wang, Y., He, Y., & Egan, B. M. (2019). An
efficient, robust, and customizable information
extraction and pre-processing pipeline for electronic
health records. IC3K 2019 - Proceedings of the 11th
International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge
Management, 1. https://doi.org/10.5220/0008071
303100321
Lee, E. K., & Wu, T. L. (2009). Classification and disease
prediction via mathematical programming. In Springer
Optimization and Its Applications (Vol. 26).
https://doi.org/10.1007/978-0-387-09770-1_12
Lee, E. K., Wu, T. L., Goldstein, F., & Levey, A. (2012).
Predictive model for early detection of mild cognitive
impairment and Alzheimer’s disease. Fields Institute
Communications, 63. https://doi.org/10.1007/978-1-
4614-4133-5_4
Lee, E. K., Yuan, F., Hirsh, D. A., Mallory, M. D., &
Simon, H. K. (2012). A clinical decision tool for
predicting patient care characteristics: patients
returning within 72 hours in the emergency department.
AMIA ... Annual Symposium Proceedings / AMIA
Symposium. AMIA Symposium, 2012.
Lei, Y., Yang, B., Jiang, X., Jia, F., Li, N., & Nandi, A. K.
(2020). Applications of machine learning to machine
fault diagnosis: A review and roadmap. In Mechanical
Systems and Signal Processing (Vol. 138).
https://doi.org/10.1016/j.ymssp.2019.106587
Lopez, O. L., Becker, J. T., Jagust, W. J., Fitzpatrick, A.,
Carlson, M. C., DeKosky, S. T., Breitner, J., Lyketsos,
C. G., Jones, B., Kawas, C., & Kuller, L. H. (2006).
Neuropsychological characteristics of mild cognitive
impairment subgroups. Journal of Neurology,
Neurosurgery and Psychiatry, 77(2). https://doi.org/
10.1136/jnnp.2004.045567
Marlin, B. M., Zemel, R. S., Roweis, S. T., & Slaney, M.
(2011). Recommender systems: Missing data and
statistical model estimation. IJCAI International Joint
Conference on Artificial Intelligence. https://doi.org/
10.5591/978-1-57735-516-8/IJCAI11-447
McDermott, M. B. A., Yan, T., Naumann, T., Hunt, N.,
Suresh, H., Szolovits, P., & Ghassemi, M. (2018).
Semi-supervised biomedical translation with cycle
Wasserstein regression GaNs. 32nd AAAI Conference
on Artificial Intelligence, AAAI 2018. https://doi.
org/10.1609/aaai.v32i1.11890
Mohan, K., Pearl, J., & Tian, J. (2013). Graphical models
for inference with missing data. Advances in Neural
Information Processing Systems.
Monteiro, S. T., & Kosugi, Y. (2007). Particle swarms for
feature extraction of hyperspectral data. IEICE
Transactions on Information and Systems, E90-D(7).
https://doi.org/10.1093/ietisy/e90-d.7.1038
Myszczynska, M. A., Ojamies, P. N., Lacoste, A. M. B.,
Neil, D., Saffari, A., Mead, R., Hautbergue, G. M.,
Holbrook, J. D., & Ferraiuolo, L. (2020). Applications
of machine learning to diagnosis and treatment of
neurodegenerative diseases. In Nature Reviews
Neurology (Vol. 16, Issue 8). https://doi.org/
10.1038/s41582-020-0377-8
Narciso, D. A. C., & Martins, F. G. (2020). Application of
machine learning tools for energy efficiency in
industry: A review. In Energy Reports (Vol. 6).
https://doi.org/10.1016/j.egyr.2020.04.035
Nwegbu, N., Tirunagari, S., & Windridge, D. (2022). A
novel kernel based approach to arbitrary length
symbolic data with application to type 2 diabetes risk.
Scientific Reports, 12(1). https://doi.org/10.1
038/s41598-022-08757-1
Palmqvist, S., Janelidze, S., Quiroz, Y. T., Zetterberg, H.,
Lopera, F., Stomrud, E., Su, Y., Chen, Y., Serrano, G.
E., Leuzy, A., Mattsson-Carlgren, N., Strandberg, O.,
Smith, R., Villegas, A., Sepulveda-Falla, D., Chai, X.,
Proctor, N. K., Beach, T. G., Blennow, K., … Hansson,
O. (2020). Discriminative Accuracy of Plasma
Phospho-tau217 for Alzheimer Disease vs Other
Neurodegenerative Disorders. JAMA - Journal of the
American Medical Association, 324(8). https://doi.org/
10.1001/jama.2020.12134
Pudil, P., Novovičová, J., & Kittler, J. (1994). Floating
search methods in feature selection. Pattern
Recognition Letters, 15(11). https://doi.org/10.
1016/0167-8655(94)90127-9
Qu, K., Guo, F., Liu, X., Lin, Y., & Zou, Q. (2019).
Application of machine learning in microbiology.
Frontiers in Microbiology, 10(APR). https://doi.org/1
0.3389/fmicb.2019.00827
Rajkomar, A., Hardt, M., Howell, M. D., Corrado, G., &
Chin, M. H. (2018). Ensuring fairness in machine
learning to advance health equity. Annals of Internal
Medicine, 169(12). https://doi.org/10.7326/M18-1990
Ray, S., Britschgi, M., Herbert, C., Takeda-Uchimura, Y.,
Boxer, A., Blennow, K., Friedman, L. F., Galasko, D.
R., Jutel, M., Karydas, A., Kaye, J. A., Leszek, J.,
Miller, B. L., Minthon, L., Quinn, J. F., Rabinovici, G.
D., Robinson, W. H., Sabbagh, M. N., So, Y. T., …
Wyss-Coray, T. (2007). Classification and prediction of
clinical Alzheimer’s diagnosis based on plasma
signaling proteins. Nature Medicine, 13(11).
https://doi.org/10.1038/nm1653
Reddy, M. M., Wilson, R., Wilson, J., Connell, S., Gocke,
A., Hynan, L., German, D., & Kodadek, T. (2011).
Identification of candidate IgG biomarkers for