application system for the gene and disease predic-
tions. The software application model was devel-
oped using Python − D jango platform environment
and a PostgreSQL database. This can be found in the
EnuwaJGX web-based application. The findings and
results from this research were analysed by the main
author of this paper.
ACKNOWLEDGEMENTS
The Author wish to acknowledge funding from the
JWECT for awarding the grant to continue this re-
search. Thanks to UCL Institute of Neurology for
testing the prototype Machine Learning gene predic-
tion web-based application and Genomics England
for providing the initial Dataset. A big thank you to
Dr Elaine Pang for proofreading the manuscript.
REFERENCES
Asif, M., Martiniano, H. F., Vicente, A. M., and Couto,
F. M. (2018). Identifying disease genes using machine
learning and gene functional similarities, assessed
through gene ontology. PloS one, 13(12):e0208626.
Botía, J. A., Guelfi, S., Zhang, D., D’Sa, K., Reynolds, R.,
Onah, D., McDonagh, E. M., Martin, A. R., Tucci,
A., Rendon, A., et al. (2018). G2p: Using machine
learning to understand and predict genes causing rare
neurological disorders. bioRxiv, page 288845.
Bruna, T., Lomsadze, A., and Borodovsky, M. (2020).
Genemark-ep+: eukaryotic gene prediction with self-
training in the space of genes and proteins. NAR Ge-
nomics and Bioinformatics, 2(2):lqaa026.
Chen, Y., González-Pech, R. A., Stephens, T. G., Bhat-
tacharya, D., and Chan, C. X. (2020). Evidence
that inconsistent gene prediction can mislead analy-
sis of dinoflagellate genomes. Journal of phycology,
56(1):6–10.
Chen, Y., Stephens, T. G., Bhattacharya, D., González-
Pech, R. A., and Chan, C. X. (2019). Evidence that
inconsistent gene prediction can mislead analysis of
algal genomes. bioRxiv, page 690040.
Chong, Y., Ikematsu, H., Yamaji, K., Nishimura, M., Kashi-
wagi, S., and Hayashi, J. (2003). Age-related accumu-
lation of ig vh gene somatic mutations in peripheral b
cells from aged humans. Clinical & Experimental Im-
munology, 133(1):59–66.
de Araujo, A. L., Hardell, C., Koszek, W. A., Wu, J., and
Willemink, M. J. (2022). Data preparation for artifi-
cial intelligence. In Artificial Intelligence in Cardio-
thoracic Imaging, pages 37–43. Springer.
Flicek, P. (2007). Gene prediction: compare and contrast.
Genome biology, 8(12):233.
Lagouge, M. and Larsson, N.-G. (2013). The role of mi-
tochondrial dna mutations and free radicals in disease
and ageing. Journal of internal medicine, 273(6):529–
543.
Lai, Y., Wu, B., Chen, L., and Zhao, H. (2004). A sta-
tistical method for identifying differential gene–gene
co-expression patterns. Bioinformatics, 20(17):3146–
3155.
Liu, H., Stephens, T. G., González-Pech, R. A., Beltran,
V. H., Lapeyre, B., Bongaerts, P., Cooke, I., Aranda,
M., Bourne, D. G., Forêt, S., et al. (2018a). Sym-
biodinium genomes reveal adaptive evolution of func-
tions related to coral-dinoflagellate symbiosis. Com-
munications biology, 1(1):1–11.
Liu, Z., Bryant, N., Kumaran, R., Beilina, A., Abeliovich,
A., Cookson, M. R., and West, A. B. (2018b). Lrrk2
phosphorylates membrane-bound rabs and is activated
by gtp-bound rab7l1 to promote recruitment to the
trans-golgi network. Human Molecular Genetics,
27(2):385–395.
Lyu, B. and Haque, A. (2018). Deep learning based tumor
type classification using gene expression data. In Pro-
ceedings of the 2018 ACM international conference
on bioinformatics, computational biology, and health
informatics, pages 89–96.
McDermott, M. B., Wang, J., Zhao, W.-N., Sheridan,
S. D., Szolovits, P., Kohane, I., Haggarty, S. J., and
Perlis, R. H. (2019). Deep learning benchmarks on
l1000 gene expression data. IEEE/ACM transac-
tions on computational biology and bioinformatics,
17(6):1846–1857.
Murphy, K. P. (2012). Machine learning: a probabilistic
perspective. MIT press.
Niccoli, T. and Partridge, L. (2012). Ageing as a risk factor
for disease. Current biology, 22(17):R741–R752.
Paisán-Ruız, C., Jain, S., Evans, E. W., Gilks, W. P., Simón,
J., Van Der Brug, M., De Munain, A. L., Aparicio,
S., Gil, A. M., Khan, N., et al. (2004). Cloning of
the gene containing mutations that cause park8-linked
parkinson’s disease. Neuron, 44(4):595–600.
Sanchez-Guajardo, V., Barnum, C. J., Tansey, M. G., and
Romero-Ramos, M. (2013). Neuroimmunological
processes in parkinson’s disease and their relation to
α-synuclein: microglia as the referee between neu-
ronal processes and peripheral immunity. ASN neuro,
5(2):AN20120066.
Sikibi, M. (2022). Use data mining cleansing to prepare
data for strategic decisions. In Data Mining-Concepts
and Applications. IntechOpen.
Zimprich, A., Biskup, S., Leitner, P., Lichtner, P., Farrer,
M., Lincoln, S., Kachergus, J., Hulihan, M., Uitti,
R. J., Calne, D. B., et al. (2004). Mutations in lrrk2
cause autosomal-dominant parkinsonism with pleo-
morphic pathology. Neuron, 44(4):601–607.
EnuwaJGX: Machine Learning Gene Prediction Software Application Model - An Innovative Method to Precision Medicine and Predictive
Analysis of Visualising Mutated Genes Associated to Neurological Phenotype of Diseases
291