is currently supported by the FPU scholarship pro-
gram, granted by the Spanish Ministry of Education
and Vocational Training (FPU20/05984).
REFERENCES
Agostinelli, S., Lupia, M., Marrella, A., and Mecella,
M. (2020). Automated generation of executable rpa
scripts from user interface logs. In International Con-
ference on Business Process Management, pages 116–
131. Springer.
Asatiani, A. and Penttinen, E. (2016). Turning robotic
process automation into commercial success - Case
OpusCapita. Journal of Information Technology
Teaching Cases, 6(2):67–74.
Capgemini, C. (2017). Robotic Process Automation -
Robots conquer business processes in back offices.
Duarte, R. B., da Silveira, D. S., de Albuquerque Brito, V.,
and Lopes, C. S. (2020). A systematic literature re-
view on the usage of eye-tracking in understanding
process models. Business Process Management Jour-
nal.
Feit, A. M., Vordemann, L., Park, S., Berube, C., and
Hilliges, O. (2020). Detecting relevance during
decision-making from eye movements for ui adapta-
tion. In ACM Symposium on Eye Tracking Research
and Applications, ETRA ’20 Full Papers, New York,
NY, USA. Association for Computing Machinery.
Jimenez-Ramirez, A., Reijers, H. A., Barba, I., and
Del Valle, C. (2019). A method to improve the early
stages of the robotic process automation lifecycle. In
CAiSE 2019, pages 446–461. Springer.
Lacity, M. and Willcocks, L. (2015). What Knowledge
Workers Stand to Gain from Automation. Harvard
Business Review.
Leno, V., Polyvyanyy, A., Dumas, M., La Rosa, M., and
Maggi, F. M. (2020). Robotic Process Mining Vision
and Challenges. Business & Information Systems En-
gineering.
L
´
opez-Carnicer, J. M., del Valle, C., and Enr
´
ıquez, J. G.
(2020). Towards an opensource logger for the analysis
of rpa projects. In International Conference on Busi-
ness Process Management, pages 176–184. Springer.
Loyola, P., Martinez, G., Mu
˜
noz, K., Vel
´
asquez, J. D.,
Maldonado, P., and Couve, A. (2015). Combining
eye tracking and pupillary dilation analysis to identify
website key objects. Neurocomputing, 168:179–189.
Mart
´
ınez-Rojas, A., Jim
´
enez-Ram
´
ırez, A., Enr
´
ıquez, J., and
Reijers, H. (2022). Analyzing variable human actions
for robotic process automation. In International Con-
ference on Business Process Management, pages 75–
90. Springer.
Mayr, A., Herm, L.-V., Wanner, J., and Janiesch, C. (2022).
Applications and challenges of task mining: A litera-
ture review.
Moran, K., Bernal-C
´
ardenas, C., Curcio, M., Bonett, R.,
and Poshyvanyk, D. (2018). Machine learning-based
prototyping of graphical user interfaces for mobile
apps. IEEE Transactions on Software Engineering,
46(2):196–221.
Petrusel, R. and Mendling, J. (2013). Eye-tracking the fac-
tors of process model comprehension tasks. In In-
ternational Conference on Advanced Information Sys-
tems Engineering, pages 224–239. Springer.
Reinkemeyer., L. (2020). Process Mining in Action. Princi-
ples, Use Cases and Outlook. Springer.
Slanzi, G., Balazs, J. A., and Vel
´
asquez, J. D. (2017). Com-
bining eye tracking, pupil dilation and eeg analysis for
predicting web users click intention. Information Fu-
sion, 35:51–57.
Tallon, M., Winter, M., Pryss, R., Rakoczy, K., Reichert,
M., Greenlee, M. W., and Frick, U. (2019). Compre-
hension of business process models: Insight into cog-
nitive strategies via eye tracking. Expert Systems with
Applications, 136:145–158.
van der Aalst, W. M. P. (2016). Process mining: data sci-
ence in action. Springer, Heidelberg.
Xu, Z., Baojie, X., and Guoxin, W. (2017). Canny edge de-
tection based on open cv. In 2017 13th ICEMI, pages
53–56.
Zimoch, M., Pryss, R., Schobel, J., and Reichert, M. (2017).
Eye tracking experiments on process model compre-
hension: Lessons learned. In Reinhartz-Berger, I.,
Gulden, J., Nurcan, S., Gu
´
edria, W., and Bera, P., ed-
itors, Enterprise, Business-Process and Information
Systems Modeling, pages 153–168, Cham. Springer
International Publishing.
Incorporating the User Attention in User Interface Logs
421