ACKNOWLEDGEMENTS
This work was supported by the Silesian Univer-
sity of Technology, Poland, (grant BK 2022) and
the Polish National Science Centre under the project
2017/25/B/ST6/02219.
REFERENCES
Alldredge, A. L. and Silver, M. W. (1988). Characteristics,
dynamics and significance of marine snow. Progress
in Oceanography, 20(1):41–82.
Astola, J., Haavisto, P., and Neuvo, Y. (1990). Vector me-
dian filters. Proceedings of the IEEE, 78(4):678–689.
Banerjee, S., Sanyal, G., Ghosh, S., Ray, R., and Shome,
S. N. (2014). Elimination of marine snow effect from
underwater image-an adaptive probabilistic approach.
In Students’ Conference on Electrical, Electronics and
Computer Science, pages 1–4. IEEE.
Caselles, V., Morel, J.-M., and Sbert, C. (1997). An ax-
iomatic approach to image interpolation. In Proceed-
ings of International Conference on Image Process-
ing, volume 3, pages 376–379. IEEE.
D’Errico, J. (2004). Inpaint nans. MATLAB Central File
Exchange.
D
¨
orgens, A. L., Ahmerkamp, S., M
¨
ussig, J., Stocker, R.,
Kuypers, M. M., Khalili, A., and Kindler, K. (2015).
A laboratory model of marine snow: Preparation and
characterization of porous fiber particles. Limnology
and Oceanography: Methods, 13(11):664–671.
Esedoglu, S. and Shen, J. (2002). Digital inpainting based
on the Mumford–Shah–Euler image model. European
Journal of Applied Mathematics, 13(4):353–370.
Farhadifard, F., Radolko, M., and U. Freiherr von Lukas
(2017a). Single Image Marine Snow Removal based
on a Supervised Median Filtering Scheme. In VISI-
GRAPP (4: VISAPP), pages 280–287.
Farhadifard, F., Radolko, M., and von Lukas, U. F. (2017b).
Marine snow detection and removal: Underwater im-
age restoration using background modeling. In Proc.
of WSCG 2017, pages 81–89.
G. Zack, W. E. Rogers, S. L. (1977). Automatic mea-
surement of sister chromatid exchange frequency.
The Journal of Histochemistry and Cytochemistry,
25(7):741–753.
Garcia, D. (2010). Robust smoothing of gridded data in one
and higher dimensions with missing values. Compu-
tational statistics & data analysis, 54(4):1167–1178.
Garnett, R., Huegerich, T., Chui, C., and Wenjie He (2005).
A universal noise removal algorithm with an impulse
detector. IEEE Transactions on Image Processing,
14(11):1747–1754.
Jin, K. H. and Ye, J. C. (2015). Annihilating filter-
based low-rank Hankel matrix approach for image in-
painting. IEEE Transactions on Image Processing,
24(11):3498–3511.
Oliveira, M. M., Bowen, B., McKenna, R., and Chang, Y.-S.
(2001). Fast digital image inpainting. In Proc. of the
Int. Conf. on Visualization, Imaging and Image Pro-
cessing (VIIP 2001, pages 261–266.
Rosenfeld, A. and Pfaltz, J. L. (1968). Distance functions
on digital pictures. Pattern Recognition, 1(1):33–61.
Roth, S. and Black, M. J. (2005). Fields of Experts: A
framework for learning image priors. In IEEE Conf.
on Computer Vision and Pattern Recognition, vol-
ume 2, pages 860–867.
Shen, J. and Chan, T. F. (2002). Mathematical models for
local nontexture inpaintings. SIAM Journal on Ap-
plied Mathematics, 62(3):1019–1043.
Smolka, B. and Mendrela, M. (2020). On the efficiency of
inpainting methods for marine snow removal in under-
water images. In Proc. of Int. Conf. on Advances in
Signal Processing and Artificial Intelligence, ASPAI,
pages 185–190.
Sun, T. and Neuvo, Y. (1994). Detail-preserving median
based filters in image processing. Pattern Recognition
Letters, 15(4):341–347.
Zhou Wang and Zhang, D. (1999). Progressive switching
median filter for the removal of impulse noise from
highly corrupted images. IEEE Transactions on Cir-
cuits and Systems II: Analog and Digital Signal Pro-
cessing, 46(1):78–80.
ˇ
Zukovi
ˇ
c, M. and Hristopulos, D. T. (2018). Gibbs Markov
random fields with continuous values based on the
modified planar rotator model. Physical Review E,
98(6):062135.
Marine Snow Removal in Underwater Images
471